Google就隱私權議題與美國FTC達成初步和解,消費者團體呼籲FTC採取更嚴厲的手段

  今年三月底,Google與美國聯邦貿易委員會(Federal Trade Commission, FTC)就Buzz案達成和解。2010年時FTC控告Google Buzz未確實保護消費者的個人資料,侵犯了消費者的隱私權,違反「聯邦貿易委員會法」(FTC Act)以及美國與歐盟所訂定之「安全港架構協議」(U.S.-EU Safe Harbor Framework)。FTC表示,Google搭配在其Gmail中的網路社交服務Buzz,讓Gmail使用者誤以為其可以自主決定是否加入該社群,但事實上縱使Gmail使用者選擇不加入,也無法完全移除此項服務。甚者,選擇加入Buzz的消費者,亦無法找到明確的方式,控制其分享的個人資料。FTC控告Google未取得消費者的同意,將Gmail的資料(通訊錄名單)供社交網路使用,構成目的範圍外的使用。

 

  依據Google與FTC和解內容,Google必須執行一套更為嚴謹的隱私權制度,不得再有誤導消費者其個人資料開放程度的行為,並且在爾後二十年都需接受獨立機構的隱私審查。初步和解內容開放30天(至2011年5月2日 )供社會大眾提供意見,之後FTC將提出最終和解內容。迄今為止,消費者團體提出的意見,包括要求FTC限制Google持有個人資料的時間,將隱私權保護制度適用到其所有的產品,對其儲存於雲端系統的個人資料進行加密動作,以及在進行個人資料蒐集前,應彈跳出視窗取得消費者同意等

 

  值得注意的是,FTC在和解案中關於隱私權政策的客體所使用的語彙為「涵蓋資料」(covered information )而非「個人資料」(personal information),「涵蓋資料」所包含的範圍除了傳統的「個人資料」,尚包含IP位址、個人實體位址,以及通訊名單等等。

 

  本案是FTC首度依職權要求業者採取更為嚴謹的隱私權保護制度以保障消費者權益,亦是FTC初次依「安全港架構協議」所採取的行動。本案對於線上服務的隱私權保護無疑是一大進展,但亦有論者擔心嚴苛的隱私權保護制度,反將造成小公司或新業者市場參進的障礙,愈發壯大Google的市場地位。

 

  除此之外,Google的Buzz服務亦被消費者以集團訴訟提起告訴,最終和解金為850萬美元。

 

  隨著Google成為搜尋引擎界的龍頭,其近年的一舉一動皆備受美國以及歐洲管理當局嚴密注意,今年二月份時,Google即時街景服務亦因不當蒐集個人資料而被法國裁罰14萬美元。

相關連結
※ Google就隱私權議題與美國FTC達成初步和解,消費者團體呼籲FTC採取更嚴厲的手段, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5451&no=55&tp=1 (最後瀏覽日:2025/12/29)
引註此篇文章
你可能還會想看
美國通訊委員會拍賣位於700MHz頻段之頻譜

  美國聯邦通訊委員會(Federal Communications Commission, FCC)預計於2008年1月24日開始Action 73之頻譜拍賣程序,以釋出位於700MHz頻段之頻譜,此一頻譜拍賣程序預計將為期數週甚或數月。   根據規劃,美國政府將在2009年年初完成無線廣播電視數位化,屆時廣播電視業者將繳回目前使用之700MHz頻段。又由於此一頻段之電波具有傳輸距離遠與穿透力強之特質,此次之頻譜拍賣活動廣受各方業者矚目,符合競標資格之業者包括電信業者、網路服務提供業者、有線電視業者及衛星電視業者,如AT&T、Verizon Wireless、Google、EchoStar Communications及Cablevision Systems等。據估計,此一頻譜拍賣所得之競標價格可能將會突破百億美元。   此次拍賣之頻譜包括5個頻段,每一個頻段的拍賣規則與用途均有所不同。其中D頻段必須與公共安全機構共用,未來得標者必須與公共安全機構溝通並達成協議,其所建立之全國性網路在緊急狀況發生時,亦必須優先提供公共安全相關機構使用。職是之故,D頻段之競標價格目前仍遠低於聯邦通訊委員會所開出之底價,未來若無業者出價達競標底價,則聯邦通訊委員會將更改底價與競標規則後,重新開放競標。

英國民航局發布航空AI監管策略三文件,以因應AI於航空領域之挑戰與機會

英國民用航空局(United Kingdom Civil Aviation Authority, CAA)於2024年12月3日發布「CAA對新興AI驅動自動化的回應」(The CAA's Response to Emerging AI-Enabled Automation)、「航空人工智慧與先進自動化監管策略」(Part A:Strategy for Regulating AI and Advanced Automation in Aerospace)以及「CAA 應用AI策略」(Part B: Strategy for Using AI in the CAA)等三份文件。首先,前者概述CAA對於AI應用於航空領域之總體立場,強調以確保安全、安保、消費者保護及環境永續等前提下,促進AI技術在相關航空領域之創新與應用;其次,「航空人工智慧與先進自動化監管策略」著重說明如何於航空領域監管AI技術之使用,以兼顧推動創新並維持安全性及穩健性;最後,「CAA 應用AI策略」則聚焦於CAA內部使用AI技術提升監管效率與決策能力的策略。 由於AI正迅速成為航空產業之重要技術,其應用範圍包含航空器、機場、地面基礎設施、空域、航太、消費者服務等,具有提高航空安全性、運作效率、環境永續性與消費者體驗之潛力。然而,相關技術風險與監管挑戰亦伴隨而至,仍需新的監管框架應對潛在風險。因此,總體而言CAA以推動AI創新技術、提升航空產業效率與永續性為目標,透過了解技術前景、建立AI通用語言,並以航空領域之五大原則為監管框架之制定核心,建立靈活的AI監管體系,維持最高水準的安全保障。五大原則及案例分述如下: (1) 安全、安保與穩健性(Safety, Security and Robustness),例如:使用AI分析航空器感測器資料進行預測維護,以利提早發現問題。 (2) 透明與可解釋性(Transparency and Explainability),例如:清楚記錄AI系統如何提出空中交通路線建議。 (3) 可質疑性與矯正機制(Contestability and Redress),例如:制定一套明確的流程,以便航空公司查詢並了解AI生成的安全建議。 (4) 公平與偏見(Fairness and Bias),例如:確保自動化旅客篩查安檢系統公平對待所有旅客。 (5) 問責與治理(Accountability and Governance),例如:明確界定AI系統在機場運營中的監管角色與職責。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}

德國數位經濟2017監測報告及建議

  德國經濟與能源部於2017年12月公布數位經濟2017監測報告,就ICT及網路經濟的表現和競爭力統計各產業數位經濟程度,並針對德國數位轉型現況及挑戰進行分析並提出相關建議。   報告資料指出, 在六大創新應用潛力的部分,14%的企業已投入工業4.0改造,集中於機械製造業,數量有逐步上升趨勢;物聯網應用則以服務業居多,特別是知識密集型服務提供者;33%的企業有提供智慧服務,以客戶為導向的企業,例如資通訊業、金融保險業,使用比例更為明顯;19%企業開始利用巨量資料,多集中於大企業或先進產業;11%企業有利用機器人及感測器;人工智慧則尚處於起步階段,而使用者多集中於資通訊產業。就上述資料顯示,推動數位轉型尚待加強。另外,今年監測報告聚焦「數位聯網及合作」議題,結果顯示,約六成的企業與其商業客戶有進行數位聯網,而只有約四成的公司與新創公司有合作,因此尚有許多創新潛力尚未得到充分利用。   國際數位經濟排名第六,落後美國、南韓、英國、日本、芬蘭。在獲得風險資本可能性的表現最佳,整體創新能力也處於相對領先地位,惟電子化政務服務較為落後,有待加強。在關鍵政策需求部分,以寬頻建設促進政策、創建數位化友善法律框架,以及獲取創新基礎的公共知識最受矚目。

日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」

  2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。   本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。   報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。

TOP