Google就隱私權議題與美國FTC達成初步和解,消費者團體呼籲FTC採取更嚴厲的手段

  今年三月底,Google與美國聯邦貿易委員會(Federal Trade Commission, FTC)就Buzz案達成和解。2010年時FTC控告Google Buzz未確實保護消費者的個人資料,侵犯了消費者的隱私權,違反「聯邦貿易委員會法」(FTC Act)以及美國與歐盟所訂定之「安全港架構協議」(U.S.-EU Safe Harbor Framework)。FTC表示,Google搭配在其Gmail中的網路社交服務Buzz,讓Gmail使用者誤以為其可以自主決定是否加入該社群,但事實上縱使Gmail使用者選擇不加入,也無法完全移除此項服務。甚者,選擇加入Buzz的消費者,亦無法找到明確的方式,控制其分享的個人資料。FTC控告Google未取得消費者的同意,將Gmail的資料(通訊錄名單)供社交網路使用,構成目的範圍外的使用。

 

  依據Google與FTC和解內容,Google必須執行一套更為嚴謹的隱私權制度,不得再有誤導消費者其個人資料開放程度的行為,並且在爾後二十年都需接受獨立機構的隱私審查。初步和解內容開放30天(至2011年5月2日 )供社會大眾提供意見,之後FTC將提出最終和解內容。迄今為止,消費者團體提出的意見,包括要求FTC限制Google持有個人資料的時間,將隱私權保護制度適用到其所有的產品,對其儲存於雲端系統的個人資料進行加密動作,以及在進行個人資料蒐集前,應彈跳出視窗取得消費者同意等

 

  值得注意的是,FTC在和解案中關於隱私權政策的客體所使用的語彙為「涵蓋資料」(covered information )而非「個人資料」(personal information),「涵蓋資料」所包含的範圍除了傳統的「個人資料」,尚包含IP位址、個人實體位址,以及通訊名單等等。

 

  本案是FTC首度依職權要求業者採取更為嚴謹的隱私權保護制度以保障消費者權益,亦是FTC初次依「安全港架構協議」所採取的行動。本案對於線上服務的隱私權保護無疑是一大進展,但亦有論者擔心嚴苛的隱私權保護制度,反將造成小公司或新業者市場參進的障礙,愈發壯大Google的市場地位。

 

  除此之外,Google的Buzz服務亦被消費者以集團訴訟提起告訴,最終和解金為850萬美元。

 

  隨著Google成為搜尋引擎界的龍頭,其近年的一舉一動皆備受美國以及歐洲管理當局嚴密注意,今年二月份時,Google即時街景服務亦因不當蒐集個人資料而被法國裁罰14萬美元。

相關連結
※ Google就隱私權議題與美國FTC達成初步和解,消費者團體呼籲FTC採取更嚴厲的手段, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5451&no=55&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
科技產業申請租稅減免 國稅局:申報浮濫

  高科技企業申請促產條例相關租稅減免浮濫,尤其是在可享高額抵減的研發項目上,爭議最多。實務上,人才培育的投資抵減減稅空間較少,頂多幾十萬元或幾百萬元,但研發投資抵減最高可達幾十億元,因此常見的爭議也最多。由於研發費用可提列為費用、又可抵稅,對企業來說效益很高,因此很多公司都先申報為研發費用,等被國稅局查到再說;另將製造、銷售費用列為研發費用的情形不勝枚舉。   依照公司研究與發展及人才培訓支出適用投資抵減辦法審查要點第1點附表,研發支出只有包括全職研發人員薪資等九種支出才能抵減,而且業者須附薪資表及證明文件證明,才能減稅。但因為研發誘因優渥,企業總是先報再說,因此行政法院投資抵減的相關訴訟,十之八九都是國稅局勝訴。根據公司研究與發展及人才培訓支出適用投資抵減辦法第5條規定,公司的研發支出,在同一課稅年度內得按百分之三十抵減當年度應納營所稅額;支出總金額超過前二年度研發經費平均數者,超過部份得按百分之五十抵減當年度應納營所稅,當年度營所稅額不足抵減者,得在以後四年度營所稅額抵減。   國稅局提醒,申請研發減免企業必須提供研究計畫等證明,否則舉證不足反將被國稅局要求補稅,恐衝擊公司當年獲利。一般來說,適用投抵減稅金額愈高的公司,也愈常被選案查核,確保公司沒有僥倖逃稅心理。如果投抵項目涉及大陸地區,像是人才培訓支出,則應依臺灣地區與大陸地區人民關係條例第24、25、25條之1條等法令規定,經主管機關核准,否則也將遭國稅局剔除補稅。

美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。   該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。   此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

美國佛羅里達州於2021年07月正式開放低速自駕貨車得於道路上行駛

  隨著新冠肺炎(COVID-19)帶來的影響,以及自動駕駛車輛(Autonomous Vehicle,下稱自駕車,自動駕駛稱為自駕)應用情境發展,美國佛羅里達州(State of Florida,下稱佛州)自2021年07月01日起正式讓低速自駕貨車(Low-Speed Autonomous Delivery Vehicle)可於其境內道路上行駛。   美國佛州首先在其州法典(Florida Statutes)有關全州統一性之車輛定義中,新增低速自駕貨車之定義,即配備毋須人類駕駛之自駕系統,且非設計作為載客運輸之車輛;此外,其須符合聯邦法規法典(Code of Federal Regulation, CFR)定義中之低速車輛(Low-Speed Vehicle),且須配備頭燈、剎車燈、方向燈、尾燈、反光設備以及車輛識別號碼,但不適用於該州其他低速車輛相關限制法規。惟如相關規定有與國家公路交通安全管理局(National Highway Traffic Safety Administration,即NTHSA)另外採用之聯邦規範相衝突時,則依NTHSA採用之規範。   此外,在該州法典亦明示低速自駕貨車在其境內道路上行駛之限制與條件: 1.低速自駕貨車原則僅能在速限低於時速為35英里以下之道路或街道上行駛。(但如該道路與速限超過時速35英里者相交,亦不影響低速自駕貨車穿越該相交路口) 2.低速自駕貨車在以下特定情形,可於速限為時速45英里以下之道路或街道上行駛: (1)低速自駕貨車在該等路段不會連續行駛超過1英里,不過該等路段之管轄單位有權針對連續行駛超過1英里的部分裁量是否放寬限制。 (2)低速自駕貨車並非為了轉向目的而獨立地在右側車道上行駛。 (3)在低速自駕貨車行駛於兩線道的道路或街道上,且後方有5輛以上的車輛時,後方車輛倘若因超車而可能駛入對向車道,或可能導致其他非安全之情境下,低速自駕貨車可在有充分安全駛離之處,自該兩線道的道路或街道駛離至限為時速45英里以下之道路或街道,以利後方車輛得繼續行駛。 3.低速自駕貨車之所有人、其遙控系統(Teleoperation System)之所有人、遠端操作人員(Remote Human Operator)或前開人員之組合式,必須為低速自駕貨車投保符合州法典明文之自駕車相關保險。

TOP