Google就隱私權議題與美國FTC達成初步和解,消費者團體呼籲FTC採取更嚴厲的手段

  今年三月底,Google與美國聯邦貿易委員會(Federal Trade Commission, FTC)就Buzz案達成和解。2010年時FTC控告Google Buzz未確實保護消費者的個人資料,侵犯了消費者的隱私權,違反「聯邦貿易委員會法」(FTC Act)以及美國與歐盟所訂定之「安全港架構協議」(U.S.-EU Safe Harbor Framework)。FTC表示,Google搭配在其Gmail中的網路社交服務Buzz,讓Gmail使用者誤以為其可以自主決定是否加入該社群,但事實上縱使Gmail使用者選擇不加入,也無法完全移除此項服務。甚者,選擇加入Buzz的消費者,亦無法找到明確的方式,控制其分享的個人資料。FTC控告Google未取得消費者的同意,將Gmail的資料(通訊錄名單)供社交網路使用,構成目的範圍外的使用。

 

  依據Google與FTC和解內容,Google必須執行一套更為嚴謹的隱私權制度,不得再有誤導消費者其個人資料開放程度的行為,並且在爾後二十年都需接受獨立機構的隱私審查。初步和解內容開放30天(至2011年5月2日 )供社會大眾提供意見,之後FTC將提出最終和解內容。迄今為止,消費者團體提出的意見,包括要求FTC限制Google持有個人資料的時間,將隱私權保護制度適用到其所有的產品,對其儲存於雲端系統的個人資料進行加密動作,以及在進行個人資料蒐集前,應彈跳出視窗取得消費者同意等

 

  值得注意的是,FTC在和解案中關於隱私權政策的客體所使用的語彙為「涵蓋資料」(covered information )而非「個人資料」(personal information),「涵蓋資料」所包含的範圍除了傳統的「個人資料」,尚包含IP位址、個人實體位址,以及通訊名單等等。

 

  本案是FTC首度依職權要求業者採取更為嚴謹的隱私權保護制度以保障消費者權益,亦是FTC初次依「安全港架構協議」所採取的行動。本案對於線上服務的隱私權保護無疑是一大進展,但亦有論者擔心嚴苛的隱私權保護制度,反將造成小公司或新業者市場參進的障礙,愈發壯大Google的市場地位。

 

  除此之外,Google的Buzz服務亦被消費者以集團訴訟提起告訴,最終和解金為850萬美元。

 

  隨著Google成為搜尋引擎界的龍頭,其近年的一舉一動皆備受美國以及歐洲管理當局嚴密注意,今年二月份時,Google即時街景服務亦因不當蒐集個人資料而被法國裁罰14萬美元。

相關連結
※ Google就隱私權議題與美國FTC達成初步和解,消費者團體呼籲FTC採取更嚴厲的手段, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5451&no=55&tp=1 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
藥品專利聯盟和WIPO將為永續發展及COVID-19更進一步共享策略和資訊

  藥品專利聯盟(Medicines Patent Pool,下簡稱MPP)2021年2月宣布將和世界智慧財產權組織(World Intellectual Property Organization,下簡稱WIPO)加強合作,因應COVID-19及推動《聯合國2030永續發展議程》(United Nations 2030 Agenda for Sustainable Development)。MPP是聯合國支援的公衛組織,透過與政府、國際組織、企業、患者團體等對象合作,對所需藥品進行排序,並和藥品專利權人簽署協議,將其授權之智財權納入專利庫,以鼓勵製造學名藥和開發新配方,促進中低收入國家的救命藥品取得與研發。   雙方將在以下領域共同合作: 一、探索促進以中低收入國家為主的COVID-19醫療技術創新及對應之智財管理策略,並在網頁上共享資訊與工具。 二、和各國專利局合作,透過連結PATENTSCOPE、Pat-INFORMED及MedsPaL等資料庫,提高關鍵藥品的專利透明度和收集資訊,並在各論壇呈現合作成果。 三、安排授權和技術移轉相關活動,包含為WIPO成員國提供的技術支援、WIPO中小企業暨創業支助司(WIPO’s SMEs and Entrepreneurship Support Division)和WIPO學術機構(WIPO Academy)執行的活動和計劃等。 四、在專利法常設委員會(Standing Committee on the Law of Patents,SCP)共享資訊:應WIPO成員國要求,介紹MPP的業務、專利和授權資料庫MedsPaL。 五、為支持被忽視的熱帶疾病(neglected tropical diseases,NTDs)、瘧疾和肺結核的早期研發,將定期協商並在網頁提供相關連結。 六、探索能進一步納入MPP協議中的爭端解決條款。   近來MPP更邀請WIPO以無表決權的觀察員身份參與理事會,雙方期望本次合作能為大眾帶來更多的利益。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

美國能源部協助企業投入再生能源研發,及促進商業化應用

  美國為鼓勵與促進企業進行再生能源之研發,能源部(Department of Energy,DOE)規劃協助企業投入再生能源研發,並期加速商業化應用。為此,能源部將推出協助措施及推動計畫,其計畫經費一部分由美國復甦與再投資法案(American Recovery and Reinvestment Act)出資,另一部分來自於今年度的預算撥款。其中,三十億美元資金協助計畫將建置將近五千項涵蓋生質能、太陽能、風力發電以及其他再生能源之生產設備,另一項七億五千萬美元資金協助將改善電力傳輸系統。能源部期盼這兩項資金協助計畫,將帶動再生能源之研發,並促進新興能源科技的商業化應用。   有關美國協助民間發展再生能源計畫,今(2009)年七月底,美國能源部已公佈相關資金協助申請作業程序,預計每項提出申請計畫平均約可獲得六十萬美元額度,目前尚未對一家公司的申請額度設有上限,也並未對其可動用之資金額度設有總額限制,預計這些計畫將鼓勵私人投資再生能源,創造未來就業機會,協助帶動美國經濟。   能源部部長Steven Chu表示,這些協助計畫將激發綠色能源科技的創新,確保未來再生能源的輸送更為安全有效率,並將帶來相關就業機會。政府方面已設定目標,預計未來三年內將增加再生能源生產至目前的雙倍。為達成此一目標,必須確保有效地資金挹注才能加速再生能源的發展,同時設置完備的電力傳輸系統,整合各類型的再生能源,如太陽能與風力發電,便於日後將所生產的能源傳送至各地。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

美國聯邦加強導入節能績效保證專案,並規劃採購實務增訂規範

  美國總統歐巴馬於2011年12月發布備忘錄(Presidential Memorandum),要求美國聯邦政府應加強「導入節能績效保證專案(Implementation of Energy Savings Projects and Performance-Based Contracting for Energy Savings)」,並宣布未來24個月內最少將投入20億(billion)美元經費,推動聯邦機構採購實施節能績效保證專案,以改善建築物能源效率。基於政策指示,美國能源部(Department of Energy)下屬聯邦能源管理推動機構(Federal Energy Management Program,以下簡稱FEMP),研議規劃配套機制,協助導入「節能績效保證專案(Energy Savings Performance Contract,以下簡稱ESPC)」,更精簡、效率、低成本之實施模式,並助益美國能源技術服務產業(Energy Service Companies,以下簡稱ESCO)發展。   美國FEMP於2012年2月公告ESPC採購關於「資金(Financing)」部分之「資訊徵求意見書(Request for Information,RFI)」,廣詢實務各界意見,希望能繼而落實於政府採購規範及契約範本之研議,並協助ESCO業者能更順利取得資金,並協助ESCO業者能更順利取得資金,及降低資金取得成本,如此亦可有利益於所採購導入之聯邦機構。   FEMP主要係規劃探討關於ESPC融資資金,最合理且有吸引力之利率,所應考慮各項要件及利率定價模式,並且規劃建立資金協助者之優先名單(Preferred Financiers),以利配套選用。再者FEMP為推動整合,特別探討ESPC跨專案(Project Aggregation (Combining))時,可能影響資金協助者之融資與財務評估,例如數ESPC專案、數ESCO業者、由同一資金協助者承接,或是數ESPC專案、數實施地點、同一ESCO業者,同一資金協助者,亦或者數ESPC專案、數實施地點、數ESCO業者、但同一政府機構、且同一資金協助者,研析相關影響要件。   以及,FEMP並探討ESPC實施「量測驗證(Measurement and Verification),對於取得融資評估過程是否增加複雜影響因素,以及資金協助者對於量測驗證機制,是否認為將增加風險並致更高融資利率,均為重要探討議題。此項意見徵求書,未來將落實於聯邦機構政府採購之實務規範上,相關內容再持續觀察追蹤。

TOP