App Store是否得申請作為商標---Apple與Microsoft開啟戰火

  2011年1月Microsoft針對Apple欲將App Store申請作為商標一案,向美國專利商標局(USPTO)提出即決判決(summary judgment)之申請,請求USPTO拒絕允許App Store註冊為商標。Microsoft主張「App Store」一詞係由「形容產品的普通名詞」加上「形容店面的普通名詞」而組成的詞彙,屬於普通性字眼(generic terms),如同「Computer Store」一詞之前也被認定為屬於普通性詞彙,不得註冊為商標。此外,Microsoft還主張App Store這個詞語已經被許多同業、新聞媒體、消費者甚至Apple本身,作為普通性詞彙加以廣泛使用,例如黑苺公司使用App World、三星公司使用Samsung App、惠普公司使用App Catalog來形容自家的應用程式專賣店。因此,App Store不應被註冊為商標,否則將造成他人無法正常使用此普通性詞彙。

  另一方面,Apple於2011年3月向美國專利商標局提出說明,反駁Microsoft的指控,Apple並舉The Paper Store、The Container Store等商標法先例,說明這些名詞最後皆被認定為具有爭議性之「描述性詞彙(descriptive terms) 」,而得以註冊登記為商標。Apple進一步認為Microsoft聘請的專家所提出可證明「App Store」一詞為普通性詞彙的相關證據,其取樣係有問題。因其是以app store小寫字樣為關鍵字,並輸入在Westlaw資料庫中進行查詢,而這樣的採樣方式,當然會導向app store一詞的使用情境偏向於普通性詞彙使用(generic use)。另外,Apple也以Microsoft十多年來大眾對其WINDOWS商標屬於普通性詞彙之爭議及指控為例,認為在衡量系爭詞彙是否屬於普通性名詞而無法作為商標使用的判斷上,須就系爭詞彙整體觀之,透過蒐集大量事實以評估系爭詞彙對相關大眾(relevant public)之主要意義(primary significance)為何。例如相關大眾就app store此詞彙的主要認知是聯想到「Apple」所經營的線上應用程式專賣商店,抑或相關大眾看到app store一詞直接想到其意指一般應用程式商店。

  在雙方激烈唇槍舌戰中,究竟這場App Store商標申請准駁戰,會由Apple還是Microsoft取得勝利?容我們拭目以待。

相關連結
※ App Store是否得申請作為商標---Apple與Microsoft開啟戰火, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5472&no=55&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
美國著作權法109(a)條「第一次銷售原則」之適用原則

  美國最高法院於2010年12月13日以4:4的平手票數確立了第九巡迴上訴法院於Omega, S.A. v. Costco Wholesale Corporation案中關於著作權法109(a)條「第一次銷售原則」(first sale doctrine) 並不適用於享有美國著作權法保護之外國製造但未經授權於美國再販售之產品。   此案源於由知名瑞士鐘錶品牌Omega 於瑞士製造的手錶透過所謂「水貨」或「灰色市場」的途徑輾轉由一家名為ENE Limited的紐約公司所購得,而Costco自該公司購得手錶後於加州賣場以低於合法代理商的價格販售。然而,Omega雖對於該手錶於外國的初次販售給予授權,但並未授權該商品爾後輸入美國並由 Costco 販賣之行為。Omega乃對Costco提出侵權告訴,而此案所牽連的著作物即為手錶底面都刻有受美國著作權法所保護之「歐米茄全球設計(Omega Globe Design)」字樣。   Costco則以著作權法第109(a)條作為抗辯,主張「第一次銷售原則」之規定,亦即Omega首次於外國販售該手錶之行為,已排除其對於後續散布、進口及未經授權之銷售等行為之侵權主張。第一審法院聽取Costco 之意見,Omega 乃上訴於第九巡迴法院。上訴法院對於「第一次銷售原則」之適用較為限縮,認為先前Quality King案的判決,並未使上訴法院對於「第109(a)條,只有當該主張涉及在美國國內製造受美國著作權法保護之著作的重製物時,可以對抗第 106(3)條(公開散布權)及第602(a)條(輸入權)」之一般規定無效。換言之「第一次銷售原則」並不適用於銷售外國製造但未經授權於美國再販售的著作物或其合法重製物。而最高法院亦同意上訴法院的看法。此案的判決結果意味著作權人或合法代理商將可間接防止或控制於外國製造的真品(即水貨)未經授權輸入於美國市場。

美國聯邦通訊委員會補助無訊號地區3G網路建設

  美國聯邦通訊委員會(Federal Communications Commission, FCC)自2010年推動「國家寬頻計畫」(National Broadband Plan)以來,即進行多項寬頻建設,使民眾於生活、工作及旅行途中,都能享受到行動寬頻網路與語音服務。而FCC於2012年2月規劃利用原普及服務基金(Universal Service Fund)下的行動通信基金(Mobility Fund)(兩者於2011年底均已劃入連接美國基金“Connect America Fund”)提撥出3億美金,一次性的提供業者於訊號未涵蓋區域進行3G網路基礎建設,並在未來三年內提供5億美金以供業者持續營運。   FCC預計於2012年9月2日,以反向拍賣(reverse auction)方式進行。由業者提出佈建方案、使用技術,並證明在競標區域內擁有足夠頻譜與建設能力,方能進入投標,最後由需要補助最少之業者得標。FCC希望利用此方式能促進市場競爭,使業者提出更積極之佈建方案。得標業者除獲得建設與營運補助外,並能為商用經營。本次拍賣將與其他頻譜執照拍賣方式類似,但就細部拍賣規則,將徵詢公眾意見後做出決定。   而為避免補助區域與已有3G訊號區域重疊,FCC就無3G訊號涵蓋區域繪製全國地圖,並公佈予投標者參考。原規劃區域為491,000區,但因過於狹小恐難以經營,故合併後為6,200區供業者競標。得標者負有義務必須於兩年之內於標得區域內完成3G網路佈建,或於3年內完成4G建設。

英國衛生部提出健康照護科技行為準則,以增進資訊安全以及新技術操作品質

  英國近來透過電子醫療紀錄的應用,以智慧演算法(intelligent algorithms)開發結合數位技術的創新醫療科技,這些成果多是以國民健保署(National Health Service, NHS)的資料做為基礎,因此關於資訊保障等議題也開始受到政府之重視。   2018年9月5日,英國衛生部(Department of Health and Social Care)在NHS健康與護理創新博覽會(NHS Health and Care Innovation Expo Conference 2018)中公布「以資料導向的健康照護科技之行為準則」(Code of Conduct for Data-driven Health and Care Technology)。此準則主要鼓勵研發公司在設計產品時,將患者的資訊安全以及新技術的操作品質列入考量。   此行為準則的目的主要在於改善整體研發環境,內容包含十項原則,分別為:界定使用者、界定價值(value proposition)、對使用的資料保持合理(fair)、透明(transparent)以及當責(accountable)的立場、符合一般資料保護規則(General Data Protection Regulation, GDPR)的資料最小化原則(data minimisation principle)、利用公開之標準、公開被使用的資料以及演算法的極限、在設計中內建合適的安全性設定、界定商業策略、展示技術使用上的有效性、以及公開演算法的類型、開發原因、與操作過程的監控方式。   官方期望接下來能廣納相關人員的建議,以增進此指引在產業運作上的適用性,並預期於2018年12月公布更新的版本。

歐盟執委會提出「具可信度之人工智慧倫理指引」

  歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。   該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。

TOP