英國不贊同歐盟新視聽媒體服務指令

  英國傳播、電信、科技及媒體相關領域業者及團體於 2006 4 月聯合發表一份意見書,反對歐盟提出的新視聽媒體服務指令( Audiovisual Media Services Directive )草案。同時英國政府也正關注這項草案並與其他會員國進行討論。


  自
2005 9 月起,歐盟開始針對電視無國界指令( Television without Frontiers Directive )的修正進行討論。歐盟考慮將該指令修改為視聽媒體服務指令,擴大其規範範圍,使其包括各種與電視相似( TV-like )的服務,並將所有視聽媒體服務區分成線性( linear )及非線性( no-linear )服務,分別給予不同程度的管制。


  不過英國有許多業者及團體對於這項新指令的制訂深表不贊同,其認為:
(1) 就非線性服務(例如隨選視訊)而言,目前既有法規以及業者自律規範已足以保障消費者; (2) 線性及非線性的分類方式可能不適宜作為法律定義的基礎; (3) 新指令將可能阻礙新進業者參與市場的意願,甚至導致投資者轉向其他國家發展。所以希望透過連署,要求歐盟重新檢視這項新指令。

相關連結
※ 英國不贊同歐盟新視聽媒體服務指令, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=549&no=55&tp=1 (最後瀏覽日:2026/02/11)
引註此篇文章
你可能還會想看
溫室氣體減量法草案出爐 新廠成本支出大增

  京都議定書已於二月正式生效,本年底將開始討論新興國家的管制措施,環保署預期,台灣最快將在二 ○ 一二年後,與其他新興工業國家並列為下一波管制對象。為了因應京都議定書未來的要求,我國已完成溫室氣體減量法的立法草案。未來政府將啟動總量管制的強制措施,明定溫室氣體總量管制等多項強制規範;並賦予經濟部可依法禁止或限制高耗能產業設置,或限制高碳類燃料輸入。惟未來新設工廠排放量必須列為企業總量管制的應削減量,雖然允許企業可與其他部門或不同產業類別交易排放量,但因成本支出大增,企業界認為影響投資意願而反彈聲浪甚大。   根據這項法案,一定規模以上的溫室氣體排放源,應採用最佳防制設施,新增溫室氣體排放量須列為實施總量管制後的「應削減量」,並作為環境影響評估審查通過承諾事項。也就是說,石化、鋼鐵等高耗能產業新設廠房、生產線時,依法必須使用高效能技術或設備,因而產生的溫室氣體量,亦必須在企業總排放量內進行削減。   惟這項規定,產業界認為向市場或向能源服務公司購買排放權,對新設工廠將大幅增加成本支出,影響投資意願,在環保署內審議時反彈聲浪甚大。由於產業界反彈甚大,環保署不但延後送出法案審議,同時考慮明定以「基限年」作為新設工廠是否須先在企業總量管制內削減,而基限年則視國際對新興國家管制動作而定。   法案並規定當國際規範我國溫室氣體應削減量時,啟動總量管制措施,企業必須依法削減既存的排放量,企業可與其他住宅或運輸部門交易,也可在同一產業類別或跨產業類別進行抵換或交易。如果總量管制仍無法達到減量目標時,將進一步實施碳稅新制。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

美國聯邦貿易委員會(FTC)持續開鍘違約揭露用戶個資的業者

美國聯邦貿易委員會(Federal Trade Commission,FTC)根據《健康違規通知規則》(Health Breach Notification Rule,HBNR),於2023年2月1日和3月2日分別對GoodRx Holdings Inc.公司和BetterHelp, Inc.公司提出擬議命令(Proposed order)。擬議命令指經由行政機關調查案件後提出的改善建議,且經聯邦法院批准後對被調查公司生效。這兩件案例是FTC於2021年後擴大《健康違規通知規則》適用範圍從傳統的健康產業及於網路行業後的首次執法。GoodRx Holdings Inc.公司提供藥物資訊平台與折扣訊息;而BetterHelp, Inc.公司提供遠距醫療服務。兩者在2017到2020年間均向他們的消費者聲明,將妥善保護所蒐集之個資,然而卻轉手將取得個資揭露給Facebook、Snapchat和Google等第三方公司,用來進行目標式廣告的投放。 FTC對GoodRx的擬議命令要求其停止向第三方揭露使用者的個人資料,並處以支付150萬美元的罰鍰。對BetterHelp, Inc.的命令除要求其停止共享使用者的個人資料外,更要求BetterHelp, Inc.向網站的使用者進行退款,退款總額上限高達780萬美元。FTC在擬議命令中建議:涉及敏感性健康資料的事業負責人,除了需要重新檢視目前持有資料的隱私和安全性外,最好能建立一套完整的資料管理流程。流程包括對當事人充分說明蒐集利用目的、取得當事人完整的知情同意、制定完整的個人資料管理及保存銷毀程序、限制員工對資料的存取權限等等。最後也最重要的是要「信守承諾」,這兩個案例中的業者都是違反了自己當初對使用者的承諾,最終才導致被處罰的結果。

日本用老鼠複製人類腎臟

  日本慈惠醫科大學研究人員用人類幹細胞,植入實驗鼠胚胎中,培育出具有人基因的複製腎,能過濾尿液。   研究人員先把生成腎臟的神經營養因子基因植入骨髓含有的幹細胞,然後在實驗鼠胚胎未生成腎臟前,將幹細胞注入胚胎中可生成腎臟的部位。隨後,研究人員摘出胚胎中相當於腎臟的部分。經過六天的培養,這部分組織長出了讓腎臟發揮功能的腎單位及其周圍的腎間質。基因檢查結果確認該腎臟是由人的骨髓幹細胞生成。研究人員再將這一"複製腎"移植到其他實驗鼠的腹部,約二周時間後,"複製腎"生長到一百五十毫克。   利用骨髓幹細胞進行再生醫療,生成皮膚和軟骨等已經進入實用階段,但利用動物再生人類器官還沒有先例。參加研究的橫尾隆認為,從理論上說,用這種方法生成的器官不會發生排異反應。除腎臟外,這種方法還可用來生成胰腺和肝臟。

TOP