為促進美國境內個人化診斷醫療器材發展並進一步實現個人化醫療之理想與目標,於今(2011)年7月14日時,FDA於各界期盼下,正式對外公布了一份「個人化診斷醫療器材管理指引文件草案」(Draft Guidance on In Vitro Companion Diagnostic Devices)。而於此份新指引文件草案內容中,FDA除將體外個人化診斷醫療器材定義為:「一種提供可使用相對應之安全且有效治療產品資訊之體外診斷儀器」外,亦明確指出,將視此類個人化檢測醫療器材產品為具第三風險等級之醫療器材,並採「以風險為基礎」(Risk-Based)之管理方式。
依據上述新指引文件草案內容,FDA對於此類產品之管理,除明訂其基本管理原則外,於其中,亦另列出兩項較具重要性之例外核准條件。第一項,是關於「新治療方法」(new therapeutics)部分,FDA認為,於後述情況下,例如:(1)該項新治療方法係針對「嚴重」或「威脅病患生命」、(2)「無其他可替代該新治療方法存在」、或(3)將某治療產品與未經核准(或未釐清)安全或功效之體外個人化診斷醫療器材並用時,其為病患所帶來之利益,明顯高於使用該項未經許可或未釐清之體外個人化診斷醫療器材所將產生之風險等前提下,FDA或將例外核准該項新治療方法。其二,是關於「已上市治療產品」部分,依據新指引文件草案,於下列各條件下,或將例外核准製造商以補充方式所提出之「新標示」產品之上市申請案,包括:(1)該新標示產品乃係一項已通過主管機關審查之醫療產品,且已修正並可滿足主管機關於安全方面之要求;(2)該產品所進行之改良須仰賴使用此類診斷試劑(尚未取得核准或未釐清安全功效);(3)將此項已上市治療產品與未經核准或未查驗釐清安全(或功效)之體外個人化診斷醫療器材並用時,其為病患所帶來之利益,明顯高於使用該項未經許可或查驗釐清之體外個人化診斷醫療器材所具之風險等。
此外,FDA方面還強調,若針對某項個人化診斷醫療器材之試驗結果顯示,其具較顯著之風險時,將進一步要求業者進行醫療器材臨床試驗(Investigational Device Exemption,簡稱IDE)。而截至目前為止,此項新指引文件草案自公布日起算,將開放60天供外界提供建議,其後FDA將參考各界回應,於修正後,再提出最終修正版本指引文件;然而,究竟FDA目前所擬採取之規範方式與態度,究否能符合境內業者及公眾之期待與需求?則有待後續之觀察,方得揭曉。
本文為「經濟部產業技術司科技專案成果」
根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。 近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。 傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。 此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。 其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
日本公布資料管理框架,促進資料加值應用日本經濟產業省2022年4月8日公布「協調性資料加值運用之資料管理框架-透過確保資料可信度創造資料價值之新路徑」(協調的なデータ利活用に向けたデータマネジメント・フレームワーク~データによる価値創造の信頼性確保に向けた新たなアプローチ),提示確保資料可信度之方法。經濟產業省於2019年7月31日設立「第3層︰網路空間信賴性確保之安全對策檢討工作小組」(『第3層:サイバー空間におけるつながり』の信頼性確保に向けたセキュリティ対策検討タスクフォース」,以下簡稱工作小組),討論確保資料可信度之要件,以利資料在網路空間內自由流通,並藉由資料創造出新的附加價值。 工作小組為確保資料可信度,首先定義資料管理為「將資料屬性依據其所涉之法令或組織規章,以及因蒐集、處理、利用、移轉等活動而改變之過程,視為一個生命週期加以管理」,並認為資料管理會受到屬性(資料性質,如內容、揭露範圍、利用目的、資料管理主體、資料權利者等)、場域(針對資料之特定規範,如各國、地區法令、組織內部規定、組織間契約等)及事件(產生、改變及維持資料屬性之事件,如生產、蒐集、處理、移轉、提供、儲存、刪除)等三大要素影響,並據此建立資料管理模型。 工作小組期待藉由上述三大要素,依序透過讓資料處理流程(事件)處於容易被觀察的狀態、整理所涉及之相關規範(場域),以及判斷資料屬性等步驟,讓利害關係人之間可更容易進行資料共享及資料治理。