德國新營業秘密保護法(The new German Trade Secrets Act, TSA)其中一個亮點即為:除非有明確契約或其他法規要求,逆向工程是合法的,其規範於該法第3條第1款,德國以往舊法(不正競爭防止法)並未特別明文,我國營業秘密法亦同。現今企業應盡快透過調整契約內容、保密政策或保密技術來防止該類法所「允許」之情形發生[1],以避免供應鏈間之風險。德國法律專家提出有關「制定合作契約」建議供參: 禁止條款應有期間明文:契約起草禁止逆向工程條款時需注意其法律效力。法明文允許進行逆向工程,也代表著可促進企業市場參與並能從現有技術中受益做進一步發展。如契約一律禁止形同限制經濟自由,無論該條款訂於平行契約(如研發契約)或於垂直契約(如授權契約),往後遇有爭議恐被法院認為條款無效。故可折衷於「期間」加以限制,禁止逆向工程直到產品或服務上市為止,基本上企業只有在確信可以收回成本情況下才會投資於新技術開發。合理而言應在產品或服務公開上市後,才可以對產品或服務進行逆向工程。 注意誠實信用原則並延長條款效力:現行法就禁止逆向工程與否可由締約雙方協議。該禁止條款並不當然有違德國民法第307條第2項誠實信用原則而不利益於締約雙方之情況。但為避免仍有違誠實信用原則疑慮,契約可明確約定於產品或服務上市前不限制締約人使用相對人產品或服務並從中發現技術或資訊,也確保該期間內營業秘密所有權人之營業秘密專有權。合作契約亦可約定禁止條款於契約提早終止一定期間內仍有效。 [1]Dr. Henrik Holzapfel,New german law on the protection of trade secrets, https://www.mwe.com/insights/new-german-law-protection-trade-secrets/ (last visisted Sep.25,2019).
歐盟延攬人才 推動新措施有鑒於現今歐洲投資於研發的經費遠落後於美國,因此使得近幾年仍無法有效縮減歐盟與美國間的創新發展落差。日前執委會提出一項針對研發環境的整合性計畫,希望藉以提升歐洲創新與研究的相關條件 。 這項計劃其來有自,早在2000年里斯本高峰會議宣示致力達成「歐洲研究領域( European Research Area) 」;2002年巴賽隆納高峰會更作出重要決議:要求所有會員國需在2010年前完成科研投資達GDP3%的目標,並且期望其中三分之二的投資將來自工商界。 該項計劃特別將焦點集中在改善私部門研發與創新之投資條件上,透過「研究人員流通行動方案」 提倡科研人才前往私人研究部門、鼓勵大學和企業之間的合作,並透過租稅補貼來鼓勵企業的投入、重新配置研究基金、改善提升大學與企業間夥伴關係等獎勵措施,以提升經濟成長與創造就業機會。
澳洲發布國家身分韌性戰略所謂「身分」(Identity)是「特徵」(characteristics)或「屬性」(attributes)的組合,可讓個人在特定環境中與其他人區分開來,以證明自己的身分,例如出生日期和地點、臉部圖像等。澳洲政府有鑑於數位經濟的快速成長,線上身分驗證比實體身分驗證更為頻繁,促使犯罪人竊取和濫用身分資訊與資格證明(credentials),使得越來越多人面臨網路犯罪和詐欺的風險,澳洲在2021年時更因為身分竊盜事件橫行,造成超過18億美元的經濟損失。 為此,澳洲資料和數位部長會議(Data and Digital Ministers Meeting, DDMM)於2023年6月23日發布「國家身分韌性戰略」(National Strategy for Identity Resilience),以取代2012年國家身分安全戰略(National Identity Security Strategy),宣示澳洲政府加強身分基礎設施和對身分竊盜的韌性與復原力,推動澳洲各州、領地(territory)和聯邦(Commonwealth)採用全國一致的身分韌性方法,使得個人身分難以被竊取,縱然不幸遭竊取,受害人亦能夠輕易自身分犯罪中恢復身分。 該戰略由十項原則組成,包含:(1)無縫接軌的聯邦、州和領地數位身分系統;(2)具包容性的身分辨識機制;(3)個人與公私部門都有各自角色;(4)制定國家實體與數位資格證明標準;(5)建立生物辨識和經同意的身分驗證;(6)便利個人跨機構更新身分資訊;(7)更少的資料蒐集與保存;(8)明確的資料分享協議;(9)資格證明的一致撤銷和重新簽發;(10)明確的問責與責任。搭配短、中、長期的實施規畫,循序漸進地加強與一制化澳洲跨司法管轄區的身分安全管理機制。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。