本文為「經濟部產業技術司科技專案成果」
淺談創新應用服務(OTT)之創新與規範課題 科技法律研究所 法律研究員 蔡博坤 2015年05月26日 隨著資通訊科技快速的發展,例如網際網路、雲端運算、智慧聯網、巨量資料、4G/5G等等,創新應用服務(Over-the-top, OTT)已逐漸包含各種基於網際網路之服務與內容。此科技應用的服務應如何在現行法律規範體系下被論及,其本身以及衍生的議題復為何,均為所欲介紹的核心,本文係以美國作為觀察之對象,希冀對於我國未來在OTT領域之法制有所助益。 壹、美國FCC對於創新應用服務(OTT)的態度觀察 在美國,聯邦通訊委員會(Federal Communication Commission, FCC)係美國境內主管電信與通訊領域聯邦層級的主管機關,對於網際網路上之新興應用服務,為鼓勵新興技術的發展,一向以避免管制為原則,也因此一些OTT TV或VoIP之商業模式,近年來無論係在美國境內抑或境外,皆有著長足的發展。另一方面,隨著科技快速變遷,FCC亦與時俱進持續透過公眾諮詢,尋求是否有調整相關定義,抑或擴張規範管制之必要。例如,2014年12月,FCC發布一個法規修訂公開意見徵集的通知(Notice of Proposed Rulemaking, NPRM),希冀更新目前於1934年通訊法(Communications Act of 1934)下之相關規範,以反映目前透過網際網路所提供的影音服務,特別將更新對於Multichannel Video Programming Distributor(MVPD)一詞定義。 貳、關鍵之法制課題 由於FCC在創新應用服務(OTT)領域市場管制者(market regulator)的角色乃至關重要,同時,提供此應用服務的業者,無論係電信業者還是新興科技業者,其彼此間相互且複雜之法律關係,所衍生之法制議題,實有必要探討以及釐清,謹就兩個層面的問題概述如下: 關於第一個層次網路中立(Net Neutrality)的議題,從相關案例實務判決觀察,2014年2月,美國有線寬頻業者Comcast即以頻寬有限資源,以及確保網路流量充足的理由,說服Netflix服務營運商,同意因此付費給Comcast,而雙方所進行之合作,也引起所謂網路中立性的爭議課題。今(2015)年2月,FCC於最新通過的Open Internet Order,有別於過往命令僅能有限度地適用於行動網路服務業者(mobile broadband),新的命令將能全面性地適用於固網以及行動網路業者,反應近年來在無線寬頻網路科技之快速進展,將擴張保護消費者近取網際網路的方式。 其次,觀察目前美國境內OTT的業者,包括Now TV、Netflix、Ditto TV、Whereever TV、Hulu、Emagine、myTV等,均有建置整合平台,俾利提供消費者新型態的商業服務,從知名Netflix公司所建構的平台政策,相關重要的規範課題包含資料的蒐集、處理與利用,也提到對於安全性的重視與兒少保護等。在相關隱私權議題面向,其指出,由於使用者得通過不同的媒介透過網際網路近取相關服務,誠是些來源皆有各自獨立之隱私權聲明、注意事項與使用規約,除了提醒用戶應盡相關的注意義務外,相關衍生的責任亦會予以劃清。 參、簡評 從上述可得知,創新應用服務(OTT)整體之發展,係與網際網路(Internet)相關推動工作係一體的,因此,我國未來如欲推動OTT相關創新服務,相關網際網路所衍生的議題,例如網路中立等,勢必將成為重要的法制層面所亟需探究之課題。 在我國,如同美國聯邦通訊委員會(FCC)角色之行政主管機關係國家通訊傳播委員會(NCC),在主管的法令中,目前依據電信法相關規範,電信事業應公平提供服務,除另有規定外,不得為差別處理(第21條);無正當理由,第一類電信事業市場主導者不得對其他電信事業或用戶給予差別待遇,抑或不得為其他濫用市場地位或經主管機關認定之不公平競爭行為(第26-1條)。 相關法律條文規範是否可因此援引作為討論創新應用服務(OTT)之法源基礎,復如何調和第一類電信事業市場主導者與新興應用服務科技業者之關係,仍存在著灰色地帶。從鼓勵產業創新之觀點出發,謹初步建議從正面的立場,鼓勵相關創新應用發展,宜避免逕就OTT服務過度管制。
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。
美國知名運動鞋品牌Converse 控告31家企業商標侵權Converse 一開始僅風靡於運動員、青少年,之後甚至帶動不追求時尚的族群也認得Converse 品牌。Converse早在Nike, Reebok和Adidas等品牌鞋款充滿市場前,以橡膠鞋頭與具識別性的星星圖樣,作為美國的運動鞋品牌,風行一時。 Converse在1917年為籃球運動員製造第一雙運動鞋—All Star,之後更邀請一位極知名的籃球明星Chuck Taylor為代言人,並以其為鞋款命名,引起旋風,成為美國青少年家喻戶曉的品牌,現已於全球累計銷售十億雙。 現在,這間百年鞋類製造商表示,Chuck Taylor鞋款廣泛可被識別的核心要素—黑色條紋和橡膠鞋頭被仿冒,對此,Converse 所屬的Nike公司已於2003年請求損害賠償;復於2008年寄發180封禁止令予販售外觀類似Chuck Taylor鞋款的零售商,藉此保護品牌。然其主要目的在於使仿冒品下架,故,此次,除了於紐約對加拿大、澳洲、義大利、中國與日本等企業提起訴訟,也針對銷售其知名運動鞋款 “Chuck Taylor”仿冒品的大型零售商Wal-Mart 和Ralph Lauren 提起訴訟。另向有權禁止仿冒品進口的美國國際貿易委員會(ITC)申請禁制令,禁止進口、銷售該仿冒鞋款。 Converse 總經理表示感到相當幸運,被公認為美國的流行指標,如此舉動,目的只是在停止仿冒的侵權行為。歡迎公平競爭,但任何公司都沒有權利抄襲Chuck Taylor的商標樣式。
歐盟提出通用型人工智慧模型的著作權管理合規措施建議歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。