日美歐中韓五大專利局首次討論專利調和,並合意加速整備共通專利分類

  由日美歐中韓五大專利局於6月23日、24日於東京召開了第四次五大專利局的首長會議,日本特許廳表示此次會議針對專利制度的調和化展開了正式的討論。

  在日本的引導下,五大專利局首次就專利制度的調和展開討論,並就今後的進行方式進行了積極的意見交換。五局在共同認識到國際調和的重要性,與尊重各國主權的前提下,達成今後積極參與促成國際討論的共識。此外,彼此亦達成共識將在五局架構下儘早實施各國專利制度與審查實務之比較研究。

  此外,五大專利局亦形成共識,將以日本特許廳與歐洲專利局的專利分類為基礎,加速完備在五局彼此間的共通專利分類。對於日本企業來說,此舉將使全球的專利文獻檢索將變得更為迅速、更加全面,同時專利權的安定性與可靠性也將獲得進一步的確保,同時日本企業也將能更迅速因應來自中韓的專利訴訟風險。

  最後,美國6月23日亦於下議院通過了專利改革法案,就專利取得要件從原來的先發明主義改採為與國際趨勢一致的先申請主義,亦屬於這一波國際專利制度的調和趨勢,我國實有及時因應、適時參與的必要。

相關連結
相關附件
※ 日美歐中韓五大專利局首次討論專利調和,並合意加速整備共通專利分類, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5527&no=55&tp=1 (最後瀏覽日:2026/01/27)
引註此篇文章
你可能還會想看
美國專利商標局針對最近可專利性客體之相關判決發布了備忘錄

  美國專利商標局下之專利審查政策處(Office of Patent Examination Policy)於2016年11月2日發布了一份備忘錄(memorandum),就近來聯邦巡迴上訴法院所做之可專利性客體(subject matters eligibility, SME)相關判決為整理並對專利審查者提出若干指引。   該備忘錄表示,美國可專利性客體審查手冊(SME guideline,下稱SME審查手冊)自今年5月修改後,聯邦巡迴上訴法院陸續做出相關判決,因此除了先就相關事項為一整理,之後亦會依據這些判決所確立之一些原則以及專利之利益相關人(patent stake holders)之回饋意見對SME審查手冊進行修改。   此備忘錄主要討論的判決為McRO案以及BASCOM案,在此兩判決中,聯邦巡迴上訴法院均認為下級審法院錯誤地依Alice規則認定專利無效。在McRO案,法院認為有關利用電腦所執行之自動人臉語音同步之動畫系統(automatic lip synchronization and facial expression animation )之方法請求項係屬有效。審查者在適用Alice規則時應依據SME手冊的2階段步驟對請求項進行整體考量,且不應忽略請求項中許多特定要件,過度簡化請求項為抽象概念。其並指出「電腦相關技術之改良」,不僅止於電腦運作或是電腦網路本身,若是一些規則(rules)(主要為一些數理關係式(mathematical relationship))可以增進改善電腦之效能者亦屬之。   備忘錄另藉著BASCOM案提醒審查者,在決定請求項是否無效時,應考慮所有的請求項之元件(elements),以判斷該請求項是否已經具備實質超越(substantial more)一般常規、通用之元件(conventional elements)之要素。同時備忘錄並提醒審查者不應依據一些法院決定不做為先例之判決(nonprecedential decisions)之意見。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

大倫敦政府提倡倫敦城市資料市集

大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「城市資料策略」(City Data Strategy),以發展「城市資料市集」為核心的「數位倫敦」(Data for London) 計畫,希望與合作夥伴共同推展「城市資料市集」,以節省資金、培育創新、推動經濟成長,並迎接可能之挑戰。 「數位倫敦」將城市資料分為開放資料(Open Data)、民間企業資料(Private Data)、商業資料(Commercial Data)、感知資料(Sensory Data),及公眾來源資料(crowded-sourced data)等5個類型。此外,蒐集之資料類型及如何使用該等資料,亦為計畫的執行重點之一。 「數位倫敦」之實施計畫(Implementation Plan)分短、中、長期,以近期發布之短、中期的路徑圖而言,大倫敦政府計劃在2年內分 5個階段,從編制資料目錄,建立資料庫聯盟,利用雲端系統建置一能預測並開發、利用新資料來源之資料庫,並以「引用資料,而不複製資料」之原則,持續與公開來源社群及夥伴合作。 「城市資料市集」作為發展大倫敦基礎設施建設之一環,從資料蒐集、過濾檢測、資料庫平台管理、整合平台及服務,進而建立新商業模式,期將倫敦打造成世界首屈一指的智慧城市。

美國「能源效率改革法案」簡介

TOP