美國將重新檢討網域管理政策

  美國商業部將於 2006 年 9 月底前舉行針對網域管理的公聽會,檢討美國政府目前對於網域名稱的管理作為,並討論是否將取消對網域名稱的限制與管理。美國這項舉動是回應部分國家對於美國現行網域管理政策的不滿。


  目前美國政府主要透過對「網域名稱與位址管理機構」( the Internet Corporation for Assigned Names and Numbers ; IC ANN )的控制,來管理所有”.com” 的網域,並擁有否決網域名稱申請案的權力。美國對於網域的控制,引起部分國家的政府及評論家的批評,認為美國政府對網域的過度干預,已經影響了全球通訊及商業運作的基礎。舉例而言,由於美國政府強烈反對,使專用色情網域”.xxx”申請案遭 ICANN 否決一事,升高了歐盟執委會對美國政府過渡干預網域管理的不滿。


  為平衡國際輿論壓力,美國商業部預定於 2006 年 9 月底前召開公聽會,討論往後網域管理的程序及方式,並計畫於 9 月 30 日改變目前對 ICANN 的管理策略。

相關連結
※ 美國將重新檢討網域管理政策, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=553&no=55&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
RFID應用發展與相關法制座談會紀實

CODEX增訂低量摻雜重組DNA植物成分之食品安全評估準則

  經過兩年的研議溝通,由國際食品標準委員會(Codex Alimentarius Commission,CODEX)生技衍生食品小組(Task Force on Foods Derived from Biotechnology,TFFBT)所研擬的「重組DNA植物成分低量摻雜之重組DNA植物來源食品安全評估準則之附件草案」(Draft Annex to the Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants on Low-Level Presence of Recombinant-DNA Plant Material,LLP草案),終於日前送交CODEX大會決議通過。   關於植物來源食品內基改物質低量呈現(Low-Level Presence)的問題之所以受到國際間高度關切,其背景因素,其實是來自於全球各地域對於基因改造食品之食品安全審查進度狀態不一之情況使然。以最明顯的美國和歐盟為例,因為,對於植物來源食品而言,其所使用的植物原料,例如穀物、豆類、油菜種子等,在種植、運送至成品途中,尤其是在採收過程中,無可避免地均有可能會混雜到某些鄰近的合法基改植物原料;而目前國際現況是,許多在美國已通過食品安全評估之基改食品植物原料,在歐盟卻遲未獲得許可,而那些意外混雜了在美國為合法基改植物原料的食品,出口至尚未核准那些經混雜基改原料食品之國家時,則會因此被拒絕進口,而形成貿易上阻礙。   針對此問題,自2006年起,TFFBT特別召集成立一個工作小組,由美國出任小組主席,並與德國及泰國擔任共同主席,負責研擬LLP草案,以提供一套較簡易評估程序,專門針對這些混雜了低量的在出口國家已經合法、但在進口國家尚未通過食品安全檢驗之重組DNA植物成分食品之情形,提俱一套安全評估方法供進口國家政府參考,藉此,一方面確保這些摻雜低量重組DNA食品之安全性,另方面也不致令進口者因其產品含有低度摻雜而銷耗掉太過的貿易利益。   LLP草案對於摻雜低量重組DNA成份之進口國家而言,其較重要具實質意義的部份,係在於資料庫之建立、共享資訊之快速使用(rapid access)等機制的導入。研議期間,工作小組即表示會與相關國際組織聯繫,搭配建立適當之資訊資料庫。而負責籌設該資料庫的國際糧農組織(FAO)則表示,其除將運用其已建立的「國際食品安全及動植物健康入口網」(International Portal on Food Safety, Animal and Plant Health,IPFSAPH)外,並計劃與經濟合作發展組織(OECD)進行合作,引用「OECD生物追蹤產品資料庫」(OECD BioTrack Database)內依CODEX「重組DNA植物來源食品安全評估準則」(Guideline for the Conduct of Foods Safety Assessment of Foods Derived from Recombinant-DNA Plants (CODEX Plant Guideline),CODEX植物準則)所蒐羅之資訊,彙集各類相關資訊為一整合網站,並開放給公眾使用。

德國與愛爾蘭對於個人資料處理是否須明示同意之見解不同

  德國與愛爾蘭資料保護局對於資料保護指令所規定個人資料(以下簡稱個資)的處理(process),是否須取得資料當事人明示同意,表示不同的見解。德國資料保護局認為臉書網站所提供之人臉辨識(預設加入)選擇退出(opt out consent)的設定,並不符合資料保護指令(Data Protection Directive)對於同意(consent)的規範,且有違資訊自主權(self-determination);然而,愛爾蘭資料保護局則認為選擇退出的機制並未牴觸資料保護指令。   德國資料保護局委員Johannes Caspar教授表示,預設同意蒐集、使用與揭露,再讓資料當事人可選擇取消預設的作法,其實已經違反資訊自主權(self-determination)。並主張當以當事人同意作為個人資料處理之法律依據時,必須取得資料當事人對其個資處理(processing)之明示同意(explicit consent)。對於部長理事會(Council of Ministers)認同倘資料當事人未表達歧見(unambiguous),則企業或組織即可處理其個人資料的見解,Caspar教授亦無法予以苟同。他認為部長理事會的建議,不但與目前正在修訂的歐盟資料保護規則草案不符,更是有違現行個資保護指令的規定。   有學者認為「同意」一詞雖然不是非常抽象的法律概念,但也不是絕對客觀的概念,尤其是將「同意」單獨分開來看的時候,結果可能不太一樣;對於「同意」的理解,可能受到其他因素,特別文化和社會整體,的影響,上述德國和愛爾蘭資料保護局之意見分歧即為最好案例。   對於同意(consent)的落實是否總是須由資料當事人之明示同意,為近來資料保護規則草案(The Proposed EU General Data Protection Regulation)增修時受熱烈討論的核心議題。資料保護規則草案即將成為歐盟會員國一致適用的規則,應減少分歧,然而對於企業來說,仍需要正視即將實施的規則有解釋不一致的情況,這也是目前討論資料保護規則草案時所面臨的難題之一。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP