2019年7月25日,紐約州州長Andrew Cuomo簽署「防止非法侵入與加強電子資料安全法案」(S.5575B/A.5635/Stop Hacks and Improve Electronic Data Security Act, 又稱SHIELD Act),目的在讓處理消費者個人資料的企業承擔更嚴格的責任。其核心精神在於,一旦發生與資料外洩相關的安全漏洞時,能及時進行適當的通知。同時,修改紐約州現有的資料外洩通知法,擴大個資蒐集適用範圍、個資定義 (例生物特徵、電郵資訊等)及資料洩漏定義、更新企業或組織之通知程序、建立合於企業規模之資料安全要求。此外,如違反通知義務,將處以最高5千美元或每次(未履行通知義務)20美元 (上限25萬美元)的民事賠償。且美國司法部長(The Attorney General) 亦得以紐約人民名義,代為起訴未實施資料安全規畫的企業,並按紐約民事執行法與規則(The Civil Practice Law And Rules)第63條進行初步救濟,依法強制禁止侵害行為繼續發生。該法預計將於2020年3月1日生效。 當天州長亦簽署「身份盜用預防措施和緩解服務修正案」(A.2374/S.3582),新增資料外洩安全保護措施,要求消費者信用機構,提供受安全漏洞影響的消費者「身份盜用預防措施」(Identity Theft Prevention )與「緩解服務」(Mitigation Services),為消費者制定長期最低度的保護手段。其要求信用機構,通知消費者將有關社會安全號碼的資料洩漏事件進行信用凍結,並提供消費者無償凍結其信用的權利。該法預計將於2019年10月23日生效,並且溯及既往適用該法案生效之日前三年內所發生之任何違反消費者信用安全的行為。
美國「2009年經濟復甦暨再投資法」大幅度修正HIPAA隱私權條款2009年02月17日美國總統簽署通過「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, ARRA),將醫療產業列為重點發展項目之ㄧ,擬由政府預算進行醫療資訊科技化計畫,俾使電子病歷的傳輸與交換得兼顧效率及安全。而以規範醫療資訊安全為主的「醫療保險可攜及責任法」之隱私權條款(HIPAA, Privacy Rule),亦因此有重大修正。 其中,最主要的變革在於擴充HIPAA的責任主體,由原有的健康照護業者、健康計畫業者及健康照護資訊交換業者,擴充至凡因業務關係而可能接觸個人健康資訊的個人或業者,包含藥劑給付管理公司、代理人及保險業者等,這些機構或個人原本與醫療院所或病患間係依據契約關係進行責任規範,但被納入HIPAA的責任主體範圍後,則需依此負擔民、刑事責任。 而於加強資訊自主權部份,亦有數個重要變革如下:(一)責任主體之通知義務:依據新規定,資料未經授權被取得、使用或揭露,或有受侵害之虞時,責任主體應即早以適切管道通知資訊主體有關被害之情事,以防備後續可能發生的損害。(二)資訊主體之紀錄調閱權:以往資料保管單位得拒絕個人調閱健康資料運用紀錄之請求,有鑒於病歷電子化後,保存及揭露相關紀錄已不會造成過重負擔;依據新規定,資訊主體有權調閱近三年內個人健康資料被使用次數及目的等紀錄。(三)資訊主體資料揭露之拒絕權:以往責任主體得逕行提供個人醫療資訊作為治療、計費及照護相關目的之使用,無論資訊主體曾表達拒絕之意與否;依據新規定,資訊主體得禁止其向保險人揭露相關資訊,除非保險人已全額支付醫療費用。 以上HIPAA之新增規範,預計於2010年02月17日正式施行。
眾議員提出新法以因應數位科技轉換產生的權利保護問題為避免數位科技轉換所可能發生的權利保護缺口,美國眾議院司法委員會主席 James Sensenbrenner Jr. 與議員 John Conyers 於本月 16 日共同提出了「 Digital Transition Content Security Act 」( DTCSA , H.R.4569 ),要求業者應在次世代的數位影像製品中加入反盜版技術。該草案的提出,無疑地為飽受盜版所苦的好萊塢注入一劑強心針。 原本可受到著作權法保護的數位內容,一旦由數位轉換為類比( analog )形式,再由類比轉換回數位後,其品質上雖稍受影響,但此一新的數位內容即不再受著作權法的保障,眾議員 John Conyers 將之稱為「類比漏洞」( analog hole ), DTCSA 的提出即在於因應此一棘手問題。未來草案若能順利通過,除非業者能提出有效阻斷違法複製的策略,否則在一年緩衝期過後,業者凡有製造或販售可將類比影像訊號轉換為數位訊號之設備,均將被宣布為違法。可能因此受到影響者,包括了電腦調頻器( PC-based tuner )與數位錄影機( digital video recorder )等。 全美電影協會( MPAA )對此新法大表歡迎,主席 Dan Glickman 認為 DTCSA 的提出,不僅保護了權利人,同時也將提供消費者更多的選擇。但另一方面,在 DTCSA 賦予商業部( Commerce Department )更大的權力以監視家電製造業者之下,草案無可避免地將遭致來自業者一方強大的反彈力量。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。