智慧型運輸系統之頻譜規劃-參考美國及歐盟之規範

刊登期別
2010年06月,第06期、第22卷
 

本文為「經濟部產業技術司科技專案成果」

※ 智慧型運輸系統之頻譜規劃-參考美國及歐盟之規範, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5543&no=55&tp=1 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

印第安那州對違反個資外洩通報義務之保險公司提起訴訟

  印第安那州首席檢察官Greg Zoeller對Wellpoint保險公司提起訴訟標的金額30萬美元之損害賠償訴訟,主張該公司因遲延向首席檢察署及超過32,000萬因個人資料外洩影響所及之客戶通報個資外洩事件,而違反印第安那州通報法〈Indiana notification laws〉中通報及揭露規定〈Chapter 3. Disclosure and Notification Requirements及Chapter 3. Disclosure and Notification Requirements〉,依法各得請求15萬美元罰金,此為印第安那州提起之首件違反通報義務之訴訟。   前述法令於2009年7月生效,新法規定個人資料擁有者〈database owners〉負有「通報義務」,其於個資外洩事件發生後,必須在「合理期間」〈within a reasonable period of time〉內,對「潛在受影響之個人」〈both the individuals potentially affected by a data breach〉,以及檢察署通報,惟經調查,該公司未於合理時間內通報前述應通報之對象。   經查該公司於今〈2010〉年2、3月間即發現客戶個資外洩,卻6月18日始通知客戶,檢察署展開調查後認定其遲延通報無正當理由,故代表印地安那州向其提起民事賠償。   前述所指外洩之個人資料包括:提出投保申請者之個人資料內容,諸如「社會安全碼」〈social security number〉、「財務資訊」〈financial information〉、「健康記錄」〈health records〉,因該保險公司網頁之照管者〈siteminder〉未能實行安全防護,使盜竊身分之人〈identity thief〉得以改變統一資源定址器〈URL〉而窺見申請者的個人資訊。   除印第安那州客戶外,該保險公司因客戶個資外洩亦使其他州投保申請者資訊曝露,包括:美國加州、科羅拉多、康乃迪克、肯特基、密蘇里、內華達、新罕布夏、俄亥俄及威思康辛等九個州,約有47萬個客戶可能因此受影響。

美國聯邦貿易委員會(FTC)持續開鍘違約揭露用戶個資的業者

美國聯邦貿易委員會(Federal Trade Commission,FTC)根據《健康違規通知規則》(Health Breach Notification Rule,HBNR),於2023年2月1日和3月2日分別對GoodRx Holdings Inc.公司和BetterHelp, Inc.公司提出擬議命令(Proposed order)。擬議命令指經由行政機關調查案件後提出的改善建議,且經聯邦法院批准後對被調查公司生效。這兩件案例是FTC於2021年後擴大《健康違規通知規則》適用範圍從傳統的健康產業及於網路行業後的首次執法。GoodRx Holdings Inc.公司提供藥物資訊平台與折扣訊息;而BetterHelp, Inc.公司提供遠距醫療服務。兩者在2017到2020年間均向他們的消費者聲明,將妥善保護所蒐集之個資,然而卻轉手將取得個資揭露給Facebook、Snapchat和Google等第三方公司,用來進行目標式廣告的投放。 FTC對GoodRx的擬議命令要求其停止向第三方揭露使用者的個人資料,並處以支付150萬美元的罰鍰。對BetterHelp, Inc.的命令除要求其停止共享使用者的個人資料外,更要求BetterHelp, Inc.向網站的使用者進行退款,退款總額上限高達780萬美元。FTC在擬議命令中建議:涉及敏感性健康資料的事業負責人,除了需要重新檢視目前持有資料的隱私和安全性外,最好能建立一套完整的資料管理流程。流程包括對當事人充分說明蒐集利用目的、取得當事人完整的知情同意、制定完整的個人資料管理及保存銷毀程序、限制員工對資料的存取權限等等。最後也最重要的是要「信守承諾」,這兩個案例中的業者都是違反了自己當初對使用者的承諾,最終才導致被處罰的結果。

英國Royal Free國家健康服務基金信託與Google DeepMind間的資料分享協議違反英國資料保護法

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2017年7月公告Royal Free國家健康服務基金信託(Royal Free London NHS Foundation Trust)與Google人工智慧研究室DeepMind之間的資料分享協議,違反資料保護法(Data Protection Act)。   該協議之目的在使DeepMind利用Royal Free所提供的醫療資料,開發一款名為Streams的應用程式,透過人工智慧系統分析得知病患惡化之情況,並以手機警示方式通知臨床醫生。由於涉及病患的可識別個人資料且人數多達160萬人,協議的合法性,尤其在資料分享是否經病患同意方面,受到質疑。   Royal Free與DeepMind主張因應用程式是直接對病患進行醫療照護,具有病患默示同意(implied consent)之正當基礎,且資料經加密後才傳給DeepMind。惟經ICO調查結果如下: 就資料將被使用作為應用程式測試一事,病患未獲充分告知亦無合理期待; 雖執行隱私影響評估,惟僅於資料傳給DeepMind後才進行,無法發揮事前評估作用; 應用程式尚在測試階段,無法說明揭露160萬病患紀錄的必要性與手段合理性。   目前Royal Free已承諾改進以確保其行為合法性。ICO之認定突顯創新不應以「減損法律對基本隱私權保障」作為代價。

TOP