藥品專利聯盟與藥廠達成首件授權協議

  國際藥品採購機制(UNITAID)為協助開發中國家取得價格可負擔的人類免疫缺陷病毒(Human Immunodeficiency Virus,HIV)及愛滋病(Acquired Immuno-deficiency Syndrome,AIDS)用藥,2009年12月時即宣布成立「藥品專利聯盟基金會」(Medicines Patent Pool Foundation,MPPF),提供5年約442萬美元作為促進各大藥廠投入專利於所組之藥品專利聯盟(Medicines Patent Pool,MPP)之經費。去(2010)年7月,MPPF在瑞士登記成立後,立即展開與藥廠協議將其專利授權給MPP,以及同意MPP再授權給其他藥廠生產製造相關藥品之行動。

  經過近1年努力,今(2011)年7月,MPPF終於與第一家美國藥廠Gilead Sciences達成授權協議,將旗下的Tenofovir(此為B型肝炎治療用藥)、Emtricitabine、Cobicistat、Elvitegravir及前述藥品固定劑量之單一藥丸產品Quad,授權給MPP再利用。接下來,MPP預計還要繼續向Abbott Laboratories、Boehringer-Ingelheim、Bristol-Myers Squibb、Merck & Co、Roche、Tibotec / Johnson & Johnson及Viiv Healthcare等藥廠爭取授權。

  根據Gilead藥廠授權協議,MPP得以無償、非專屬、不可轉讓方式製造、使用、邀約販賣及販賣前述藥品,並將之再授權給印度學名藥廠;合法的被再授權人(Sublicensee)得出口及販賣其藥品,並支付3-5%權利金,但被再授權人若是為12歲以下兒童病患開發液體狀、可分散之兒科醫學劑型配方時,則可例外無須支付權利金。雖然Gilead藥廠之授權協議在內容上仍有諸多值得檢討之處,例如只限授權給印度學名藥廠、提供臨床試驗階段之Cobicistat、Elvitegravir及 the Quad藥品,雖確實可使開發中國家最快速度享受到最新的有效藥,但不免會引起是否涉及開發中國家新藥人體試驗之揣測。但無論如何,MPP成功獲得Gilead藥廠之授權,除打破外界先前對於MPP能否實際說服商業藥廠為公益目的加入之質疑,藉由雙方所訂之對象、範圍、權利金與例外等授權條件,更能明確看出MPP日後實際運作將採之方式。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 藥品專利聯盟與藥廠達成首件授權協議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5547&no=55&tp=1 (最後瀏覽日:2026/01/15)
引註此篇文章
你可能還會想看
德國聯邦議院通過能源效率法,節能目標將入法

德國聯邦議院於2023年9月21日通過《能源效率法》(Energieeffizienzgesetz, EnEfG)草案,確立德國能源效率目標,並規範公部門及企業的具體效率措施,及首次定義資料中心的能效標準,本法並要求德國2030目標應符合歐盟能源效率指令(EU Energy Efficiency Directive, EED)。預計聯邦參議院將在10月底審議該法律,之後將盡快生效。本次修法重點如下: 1.能源效率目標:EnEfG規定2030年德國減少初級和最終能源消耗的目標,以及2045年減少最終能源消耗的目標。以最終能源消耗而言,此代表著2030年減少約500TWh(與目前水準相比)。未來,聯邦政府將在立法期開始時,定期向聯邦議院通報目標實現情況,並在必要時決定調整工具組合。 2.聯邦及各邦的節能義務:從2024年起,聯邦政府和各邦政府有義務採取節能措施。至2030年,聯邦及各邦的最終能源消耗每年各分別節省45TWh和3TWh。 3.公部門在節能減排方面樹立榜樣:為了使聯邦和邦層級的公部門在提升能源效率方面能做為表率,未來將導入能源或環境管理系統。此外,EnEfG也規定節能措施的實施,目標是每年最終能源消耗減少2%。 4.企業能源或環境管理系統:EnEfG要求能耗較大(超過平均7.5GWh)的企業導入能源或環境管理系統,最終能源消耗總量為2.5 GWh以上的企業,則需要在實施計畫中,記錄和公布節能措施。此種作法不僅提高能源消耗的透明度,同時也讓企業可自行決定導入哪些措施以及預計的成果。 5.資料中心的能源效率及餘熱要求:新的資料中心應遵守能源效率標準,還必須利用餘熱(Abwärme)。未來,所有大型資料中心營運商應使用再生能源電力,並於公共登錄冊中記載能源消耗的資訊,以及向客戶告知其具體能源消耗狀況。 6.餘熱的避免與利用:未來應盡可能避免生產過程中產生餘熱。如果無法避免,則應利用餘熱。此外,有關企業餘熱潛力的資訊將綁定並公布在一新平台上。

加拿大可能推動更嚴格的身份盜用法律

  加拿大的身份盜用問題嚴重,根據Canadian Council of Better Business Bureaus估計,每年因身份盜用所造成的經濟整體損失超過二十億加幣。此外,去年十一月Ipsos-Reid的調查顯示,73%的加拿大人擔心身份盜用問題,且28%的加拿大人曾親身遭遇、或是有周遭認識之人因此受害。   然而,與身份盜用猖獗的現況相較,加拿大個人資料和隱私保護法制一直飽受批評,被認為無法遏止此一問題擴散。加拿大資料安全之基礎規範為「個人資訊保護與電子文件法」(Personal Information Protection and Electronic Documents Act),但以具有重要嚇阻效果的刑法而言,卻只處罰濫用他人身份資訊,如身份詐欺、冒用、偽造等行為,但對於初步蒐集、處理和盜賣身份資訊之行為,卻難以透過現行刑法規範。   身份盜用可能造成的影響層面相當廣泛,例如個人的財務和信用損失、商業或財金產業的損失,甚至是整體納稅人的傷害。   職是之故,加拿大勞工部、魁北克經濟發展部等政府首長乃宣布,聯邦政府有意推動刑法之修改,使檢警對於先期身份盜用(或違法資料蒐集)之行為,有更大的調查和追訴空間,並希望此一政策方向能獲得國會的後續支持。

落實完善數位資料管理機制,有助於降低AI歧視及資料外洩風險

落實完善數位資料管理機制, 有助於降低AI歧視及資料外洩風險 資訊工業策進會科技法律研究所 2023年07月07日 近年來,科技快速發展,AI(人工智慧)等技術日新月異,在公私部門的應用日益廣泛,而且根據美國資訊科技研究與顧問公司Gartner在2023年5月發布的調查指出,隨著由OpenAI開發的ChatGPT取得成功,更促使各領域對於AI應用的高度重視與投入[1],與此同時,AI歧視及資料外洩等問題,亦成為社會各界的重大關切議題。 壹、事件摘要 目前AI科技發展已牽動全球經濟發展,根據麥肯錫公司近期發布的《生成式人工智慧的經濟潛力:下一個生產力前沿(The next productivity frontier)》研究報告指出,預測生成式AI(Generative AI)有望每年為全球經濟增加2.6兆至4.4兆的經濟價值[2]。同時在美國資訊科技研究與顧問公司Gartner對於超過2500名高階主管的調查中,45%受訪者認為ChatGPT問世,增加其對於AI的投資。而且68%受訪者認為AI的好處大於風險,僅有5%受訪者認為風險大於好處[3]。然而有社會輿論認為AI的判斷依賴訓練資料,將可能複製人類偏見,造成AI歧視問題,而且若程式碼有漏洞或帳戶被盜用時,亦會造成資料外洩問題。 貳、重點說明 首先,關於AI歧視問題,以金融領域為例,近期歐盟委員會副主席Margrethe Vestager強調若AI用於可能影響他人生計的關鍵決策時,如決定是否能取得貸款,應確保申請人不受性別或膚色等歧視[4],同時亦有論者認為若用於訓練AI的歷史資料,本身存有偏見問題,則可能導致系統自動拒絕向邊緣化族群貸款,在無形之中加劇,甚至永久化對於特定種族或性別的歧視[5]。 其次,關於資料外洩問題,資安公司Group-IB指出因目前在預設情況下,ChatGPT將保存使用者查詢及AI回應的訊息紀錄,若帳戶被盜,則可能洩露機敏資訊。據統計在2022年6月至2023年5月間,在亞太地區有近41000個帳戶被盜,而在中東和非洲地區有近25000個帳戶被盜,甚至在歐洲地區也有近17000個帳戶被盜[6]。另外在2023年3月時,ChatGPT除了發生部分用戶能夠檢視他人聊天紀錄標題的問題外,甚至發生個人資料外洩問題,即用戶可能知悉他人的姓名、電子郵件,付款地址,信用卡到期日及號碼末四碼等資料[7]。 參、事件評析 對於AI歧視及資料外洩等問題,應透過落實完善數位資料治理與管理機制,以降低問題發生的風險。首先,在收集訓練資料時,為篩選適合作為模型或演算法基礎的資料,應建立資料評估或審查機制,減少或避免使用有潛在歧視問題的資料,以確保分析結果之精確性。 其次,不論對於訓練資料、分析所得資料或用戶個人資料等,均應落實嚴謹的資料保密措施,避免資料外洩,如必須對於資料進行標示或分類,並依照不同標示或分類,評估及採取適當程度的保密措施。同時應對於資料進行格式轉換,以無法直接開啟的檔案格式進行留存,縱使未來可能不慎發生資料外洩,任意第三人仍難以直接開啟或解析資料內容。甚至在傳送帳戶登入訊息時,亦應採取適當加密傳送機制,避免遭他人竊取,盜取帳戶或個人資料。 財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境完善,於2021年7月發布「重要數位資料治理暨管理制度規範(Essential Data Governance and Management System,簡稱EDGS)」,完整涵蓋數位資料的生成、保護與維護,以及存證資訊的取得、維護與驗證的流程化管理機制,故對於不同公私部門的AI相關資料,均可參考EDGS,建立系統性數位資料管理機制或強化既有機制。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Gartner, Gartner Poll Finds 45% of Executives Say ChatGPT Has Prompted an Increase in AI Investment (May 3, 2023), https://www.gartner.com/en/newsroom/press-releases/2023-05-03-gartner-poll-finds-45-percent-of-executives-say-chatgpt-has-prompted-an-increase-in-ai-investment (last visited June 30, 2023). [2]McKinsey, The economic potential of generative AI: The next productivity frontier (June 14, 2023), https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-AI-the-next-productivity-frontier#introduction (last visited June 30, 2023). [3]Gartner, supra note 1. [4]Zoe Kleinman, Philippa Wain & Ashleigh Swan, Using AI for loans and mortgages is big risk, warns EU boss (June 14, 2023), https://www.bbc.com/news/technology-65881389 (last visited June 30, 2023). [5]Ryan Browne & MacKenzie Sigalos, A.I. has a discrimination problem. In banking, the consequences can be severe (June 23, 2023), https://www.cnbc.com/2023/06/23/ai-has-a-discrimination-problem-in-banking-that-can-be-devastating.html (last visited June 30, 2023). [6]Group-IB, Group-IB Discovers 100K+ Compromised ChatGPT Accounts on Dark Web Marketplaces; Asia-Pacific region tops the list (June 20, 2023), https://www.group-ib.com/media-center/press-releases/stealers-chatgpt-credentials/ (last visited June 30, 2023). [7]OpenAI, March 20 ChatGPT outage: Here’s what happened (Mar. 24, 2023),https://openai.com/blog/march-20-chatgpt-outage (last visited June 30, 2023).

美國專利標示不實之罰金計算

  美國聯邦巡迴上訴法院在2009年底於The Forest Group Inc. v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292中關於不實專利標示(false patent marking)的懲罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎。美國專利法35 U.S.C. § 292中要求法院對專利資訊標示不實或錯誤之產品或包裝處以最高美金$500的罰金。在此案之前,許多地方法院將35 U.S.C. § 292解釋為罰金之計算是以每一次被告”決定”將產品標示不實專利資訊為基礎 (single penalty for each “decision” to falsely mark products),不論此決定是包含一個或一整批產品。在本案中,聯邦巡迴上訴法院同意地方法院的看法認定被告Forest Group意圖藉不實專利標示企圖欺騙大眾但撤銷地方法院將罰金定為$500之判定,而將目前專利法35 U.S.C. § 292 解釋為罰金是以”每一個”標示錯誤專利資訊的產品為基礎 (penalty for false marking on a per article basis)。   為了防範日後因此案罰金計算方式而造成所謂”標示流氓”(marking trolls) 之興起,聯邦法院於其判決中特別說明其解釋並非要求法院必須將每一標示錯誤專利資訊的產品處以$500美元的罰金。因法條中之罰金是以美金$500為上限,法院有權利權衡各案例背景決定罰款金額。例如,針對大量製造但價錢低廉的產品, 法院可對每一個產品處以極少的罰金。   The Forest Group 一案是美國聯邦巡迴上訴法院第一次針對不實專利標示之罰金提出解釋,直得關注其後續引發反應。廠商也應重新檢視其產品專利標示是否有不實或錯誤之狀況以避免被控標示不實專利資訊而被處以罰款。

TOP