為加強促進日本相關產業與政府政策對於太陽能和其他再生能源之投資比重,日本下議院(lower house of parliament)日前於8月23日通過綠色法案(目前未有正式名稱,外媒多以Green Bill稱之),該法案近日將由日本上議院(upper house of parliament)進行進一步的確認與審議。目前預計綠色法案和其他相關的配套法律措施將於2012年7月生效實施。
目前日本境內的總電力生產來源中,經由核能發電廠所生產之電力占日本總生產電量之30%,而日本政府預計於2030年將該種核能發電廠所生之電力提升至總生產電量比例之50%。然而,在日本福島於今年(2011)3月遭受地震和海嘯波及之後,其所衍生之核能發電廠輻射外漏事件,促使日本政府對於其現有之核能電廠興建計畫開始進行反思,且日本大眾對於此種原子能量之安全性,及相關的國家能源政策亦產生了質疑聲浪。日前,日本政府在思考其現有的能源政策走向,以及相關現況之檢視後,乃於2011年8月23日由其下議院通過綠色法案。
日本綠色法案的主要目的乃為減少當前日本主要電力生產來源為核能發電之現況,並且達成國際共同協議所訂定之減少溫室氣體排放目標。即便該綠色法案具有促進相關綠色能源電力發電設施的建置率升高,並且加速相關投資市場活絡的連帶效應,然而由於該法案目前針對各項綠色能源的使用收費價格細節尚未加以規範,因此對於未來消費者權益與鼓勵投資者投資各項新興綠色能源設施間之支出費用該如何加以平衡,仍為一個不確定的問題,而有待日後各相關部會加以討論規範。
本文為「經濟部產業技術司科技專案成果」
隨著食物過敏與過胖等健康問題愈來愈受重視,美國FDA(Food and Drug Administration, 食品暨藥物管理局)規定從2006年1月1日起,食品製造商必須在食品標示上揭示產品中八種主要過敏原與反式脂肪(trans fat)含量,並且必須加強揭示卡路里含量、說明整個包裝所含的養分。 依據此項新規定,廠商必須在食品標籤上以簡易的文字,標示八種容易造成過敏的過敏原,包括核果(杏仁、胡桃、大胡桃)、牛奶、蛋類、魚類、甲殼綱蝦蟹、花生、大豆與小麥。至於反式脂肪,又稱為轉化脂肪或反脂肪,是不飽和脂肪酸的一種,它會刺激人體內低密度脂蛋白(LDL)的增加,進而使低密度蛋白膽固醇(LDL-C)的量增加。LDL-C又被稱為『壞膽固醇』或『不好的膽固醇』,它會間接刺激膽固醇升高,增加罹患心臟血管疾病的風險。過去一直沒有決定每人每天攝取量標準,因此在商品包裝上的營養成分表(Nutrition Facts Table)一直都沒有列出反式脂肪含量,但是新制上路後,在包裝標籤上面也必須列出反式脂肪含量。 在消費者越來越重視健康問題之趨勢下,未來如何製造反型脂肪低或零含量的食用加工油脂產品,相信會是相關業者所面臨的新挑戰。
美國聯邦交通部公布自駕車4.0政策文件美國交通部(Department of Transportation)於2020年1月8日公布「確保美國於自動駕駛技術之領導地位:自駕車4.0」(Ensuring American Leadership in Automated Vehicle Technologies : Automated Vehicles 4.0)政策文件,提出三個核心原則及相對應的策略規劃: 一、 使用者與社會的保護: 整合自動駕駛技術之安全性,包括防堵對自駕車性能之詐欺或誤導行為,以強化民眾對此新興技術的信心。 與自駕車技術開發商、製造商及服務商合作,預防與降低惡意使用自動駕駛技術所造成的公共安全威脅及犯罪,如制定網路安全標準、於運輸系統之資料傳輸媒介及資料庫設計能夠防止、反應、偵測潛在或已知危險之可行作法。 要求製造商於設計和結合相關自動駕駛技術時,採取具整體風險考量之方式,以確保資料安全性與公眾隱私保護,特別是針對駕駛者與乘客,以及第三人資料存取、分享及使用。 支援與協助自動駕駛技術研發,並透過提供多樣化商品和服務,滿足消費者需求並增加自駕車的普及性,使國人能使用安全且能負擔的移動載具。 二、 保障市場效率: 採取靈活及技術中立政策,由大眾選擇具經濟及有效率的運輸方案。 透過相關智慧財產法規,保護相關技術,並持續推動經濟增長之政策及提升國內技術創新競爭力。 收集與研擬國內外法規資料,並使自動駕駛技術產品及服務能夠與國際標準接軌。 三、 促進與協調各方合作: 積極協調全國自動駕駛技術研究、法規和政策,以利有效運用各機構資源。 參考國際間自動駕駛技術標準及監理法規,並與各州政府及業界共同研擬與整合自動駕駛技術至現行運輸系統標準與相關法規。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
FDA公布修訂行動醫療APP指導原則美國於2015年2月5日公布修訂之行動醫療應用程式指導原則(Mobile Medical Applications, Guidance for Industry and Food and Drug Administration Staff),取代原先在2013年9月公布之版本。本次的修訂主要是將美國2015年2月9日公布之醫療設備資訊系統、醫療影像儲存設備、及醫療影像傳輸設備指導原則(Medical Device Data Systems, Medical Image Storage Devices, and Medical Image Communications Devices, Guidance for Industry and Food and Drug Administration Staff)規範納入其中。 2015年2月9日公布之醫療設備資訊系統、醫療影像儲存設備及醫療影像傳輸設備指導原則,擬降低FDA的管理程度,採用風險性評估方式,針對部分醫療設備資訊系統、醫療影像儲存設備及醫療影像傳輸設備等三種屬於第一級低風險之醫療器材,得不受ㄧ般管制,例如不需要登記、上市後報告及品質系統法規遵守等。原先,美國於2011年先將醫療設備資訊系統從第三級之高風險醫療器材,降低為第一級低風險之醫療器材,但經過長期間的使用經驗後,FDA認為,此等醫療器材設備在健康照護中十分重要,但相對於其他醫療器材,風險則較低,因此,將放寬程序。 行動健康應用程式亦可能歸類為上述之醫療器材,因此,為與上述的指導原則相符合,對於行動健康應用程式的審查亦作部分放寬。例如,當應用程式與資療資訊系統結合,而成為應受規範之醫療器材時,原先之規定為應進入醫療器材之規範程序,但新修訂之指導原則,則再放寬。僅將涉及積極的病人監測或醫療器材數據分析時,才需要回歸醫療器材之審查方式,其他醫療資訊系統若僅為儲存、傳輸等功能,而非主要提供診斷、治療等功能時,則可以不受醫療器材之規範限制,因風險程度較低,因此改由FDA視個案審查即可。為鼓勵相關產業的發展,FDA將風險性低之醫裁降低管理程度,其後續發展值得觀察。