在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
歐洲議會通過支付服務指令修正草案歐洲議會(European Parliament)於今(2015)年10月8日通過支付服務指令的修正草案(revised Directive on Payment Services; 簡稱PSD2),修正後的支付服務指令將能降低消費者使用支付服務時所花的費用、提升支付服務的安全性、吸引業者投入支付服務領域及促進支付服務的創新。 未來,擁有網路帳戶的付款人可以利用第三方支付業者提供的支付軟體及設備進行付款。新法中也明訂,若付款者使用支付工具,如金融卡(Debit Card)或信用卡(Credit Card)為付款時,支付業者不得向付款人收取額外的費用,這個規定使付款人得以省下一筆開銷。 新法也規定,提供付款人帳戶資訊的銀行,若對第三方支付業者有安全上的疑慮時,其向監管機關提出客觀合理的理由後,得拒絕第三方支付業者向其存取付款人的帳戶資訊。 另外,為降低用戶被盜款的風險及保障用戶的財務資料,支付業者有義務提供嚴格的用戶認證機制(strong customer authentication)。此機制藉由確認付款人的密碼、使用的卡片或聲音或指紋的認證來確認付款人的身分。而當用戶的付款工具(payment instrument)遺失、被竊取或不當利用,而造成有未經用戶同意而為支付的情況發生時,依新法規定,用戶負擔之損失,最多不得超過50歐元。
新的多媒體裝置,為數位內容帶來更多空間Iomega 公司是一家在全球資料儲存裝置產業中居領先地位的廠商。近日, Iomega 在慶祝其二十五週年的同時,推出了一款多媒體儲存硬碟,其本身具有多媒體 ( 包括圖片、音樂與影片等 ) 錄放的功能,可搭配目前全球所有款式的電視機種與 AV 系統使用。 這套系統,適合於家庭或長途駕駛人使用,使用者可免除煩人的多媒體檔案格式轉換問題。隨著數位科技的進步,廠商所推出的多媒體裝置愈來愈多樣,消費者的使用也愈來愈方便。相信,隨著硬體與軟體設備的不斷發展,數位內容也會展現出愈來愈多的可能與空間。
歐盟發布人工智慧法、醫療器材法與體外診斷醫療器材法協同適用問答集歐盟《人工智慧法》(Artificial Intelligence Act, AIA)自2024年8月1日正式生效,與現行的《醫療器材法》(Medical Devices Regulation, MDR)及《體外診斷醫療器材法》(In Vitro Diagnostic Medical Devices Regulation, IVDR)高度重疊,特別是針對用於醫療目的之人工智慧系統(Medical Device AI, MDAI)。為釐清三法協同適用原則,歐盟人工智慧委員會(Artificial Intelligence Board, AIB)與醫療器材協調小組(Medical Device Coordination Group, MDCG)於2025年6月19日聯合發布常見問答集(Frequently Asked Question, FAQ),系統性說明合規原則與實務操作方式,涵蓋MDAI分類、管理系統、資料治理、技術文件、透明度與人為監督、臨床與性能驗證、合規評鑑、變更管理、上市後監測、資安與人員訓練等面向。 過去,MDR、IVDR與AIA雖各自對MDAI有所規範,但始終缺乏明確的協同適用指引,導致製造商、監管機關與醫療機構在實務操作上常面臨混淆與困難。本次發布的指引透過36題問答,系統性釐清三法在高風險MDAI適用上的關聯,重點涵蓋產品分類原則、合規評鑑流程以及技術文件準備要點,具高度實務參考價值。此外,傳統醫療器材的上市後監測,難以有效因應AI系統持續學習所帶來的風險。AIA因此要求高風險MDAI建立強化的上市後監控系統,並評估AI系統與其他系統交互作用可能產生的影響。 整體而言,該指引的發布不再僅限於MDAI技術層面的合規審查,而是進一步擴展至資料正當性、系統可控性、使用者能力與整體風險治理等層面,體現歐盟對AI倫理、透明與責任的制度化落實。此文件亦為歐盟首次系統性整合AI與醫療器材監管原則,預期將成為MDAI產品研發與上市的重要參考依據。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)