在越來越多消費者擔心部分企業以進行大數據研究名義竊取、交易或透露個人資料之行為,侵犯消費者隱私情況下,中國政府已要求互聯網企業加強對個人資料之保護;這並非中國當局第一次要求互聯網企業加強數據隱私保護,中國消費者協會(China Consumers Association, CCA)亦曾示警,中國大量智慧型手機應用程式正在蒐集過多個人資料,包括但不限於用戶位置、聯絡人清單及手機號碼。 中國互聯網金融協會(National Internet Finance Association of China, NIFA)於 11月初發表聲明提及:「未經消費者同意,會員組織不得蒐集、利用或向第三方提供消費者個人資料。」、「所有會員機構都應承擔保護個人資料之個人責任。如發生問題,應立即予以改善並報告給協會……消費者風險警示亦應加強。」,該協會亦向所有會員機構提出警告,對數據隱私之改善措施應承擔個人責任。 中國互聯網企業讚揚AI工具可使用海量數據以增強消費者體驗之優點,然它們不得不靈活應對消費者對如何蒐集與利用個人資料日益增長之焦慮,而中國政府目前正起草制定有關個人數據隱私保護法律,以解決日常生活伴隨著多方數位體驗而生之敏感問題。
美國新一代公共安全無線寬頻的應用公共安全和國土安全局(PSHSB)局長傑米.巴尼特(Jamie Barnett)於2011年3月16日與美國聯邦通訊傳播委員會(Federal Communication Commission)分別先後宣示將更近一步加強國家寬頻計畫(The National Broadband Plan)中寬頻通訊科技在公共安全層面的應用。其具體落實在成立國家級的緊急反應互動中心(The Emergency Response Interoperability Center, ERIC)。該中心利用700 MHz頻段成立全國性的公眾安全無線網絡。 促進公共安全無線寬頻通訊的使用,是公共安全和國土安全局最主要的任務。透過建立互動式公共安全寬頻無線技術的操作框架,使警察、消防及緊急醫療人員可使用到最先進的數位式寬頻通訊技術。配備可在任何時間、地點即時傳輸資訊的薄型智慧電話,替代傳統上所使用的對講機。 其次為發展下一代的911通報網絡。目前大約70%的911通話來自手機,可是大多數的911電話通報中心,並沒有配備可接收目前主流行動通訊使用者所傳送的簡訊、電子郵件、視訊或照片的設備。新一代的查詢通知系統(Notice of Inquiry,NOI)可取代傳統的電話,使公眾透過先進的通訊科技獲得緊急救助。雖然精確定位裝置並不在整個系統之中,但通過行動通訊業者所提供的數據,仍可定位需救助者的方位。 美國將寬頻通訊科技落實在公共安全層面的應用,將有助於其提升整體緊急救護的效率。
美國聯邦交易委員會提出巨量資料報告,關注商業應用之潛在歧視性效果美國聯邦交易委員會(Federal Trade Commission, FTC)於2016年1月6日公布「巨量資料之商業應用」報告(Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues),報告中歸納提出可供企業進一步思考之數項議題,期能藉此有助於企業確保巨量資料分析應用之正當合法性,並避免產生排除性或歧視性之對待,但同時亦能透過巨量資料之分析應用為消費者帶來最大的利益。FTC主委Edith Ramirez表示,巨量資料之重要性於商業之各領域均愈發凸顯,其對於消費者之潛在利益自是不言可喻,然企業仍應確保巨量資料之利用不會產生傷害消費者之結果。 「巨量資料之商業應用」報告經徵集公共意見與彙整相關研究後,聚焦於巨量資料生命週期的後端,亦即巨量資料被蒐集與分析之後的利用。報告中強調數種能幫助弱勢群體的巨量資料創新利用方式,例如依病患之生理特性量身訂作並提供醫療照護,或是新的消費者信用評等方式。報告同時也指出可能因為偏見或資料錯誤帶來的風險,像是信用卡發卡銀行降低某人信用額度的原因並非基於該持卡人之消費與還款記錄,而是與該持卡人被歸為「同一類型」之消費者所共同擁有之記錄與特徵。其次,報告對巨量資料於商業領域之利用可能涉及之法規進行了初步盤點,包括公平信用報告法(Fair Credit Reporting Act, FCRA)、與機會平等相關之聯邦立法—像是基因資訊平等法(Genetic Information Nondiscrimination Act, GINA)、以及聯邦交易委員會法,報告也列出7項預擬提問,協助企業因應巨量資料商業利用之法令遵循問題。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)