Thomson Reuters於11月14日當週,宣佈全球前100家最具創新機構,美國持續領先,而亞洲及歐洲分別屬第二及第三。然而,中國由於智慧財產保護及全球產品商品化實行因素,未能排入百大企業中。其名單結果來自於Thomson Reuters 2011全球百大創新專案,透過專屬方法分析專利資料及相關指標,來確認這些企業和機構於創新活動領先於全球之地位。
Thomson Reuters智慧財產解決方案事業部總裁David Brown表示:「創新使企業和國家成長繁榮,主要是為了追求克服經濟的衰退並達到競爭優勢」。
2011全球百大最具創新企業的市場資料,與2009年比較顯示,2010年百大企業增加了超過400,000工作機會,較前年提高3%,增加的比率高於同一期間的標準普爾(S&P)500企業的幅度。Brown表示:「全球百大創新組織創造的工作機會代表了創新為經濟成長具意義影響的指標」。除此之外,2011百大創新組織的市場價值加權平均收益較前一年度增加12.9%,而標準普爾500企業市場價值加權平均收益僅增加7.2%。
排名企業依地域分佈,其中40%來自為美國,31%為亞洲,29%為歐洲,亞洲主要為日本和南韓,前者占27%,後者占4%。歐洲主要區分為法國(11%),德國(4%),荷蘭(4%),列支敦斯登侯國(1%),瑞典(6%)及瑞士(3%)。法國為歐洲創新領導國。儘管大陸於專利申請數量佔領優先,但缺乏全球影響力及專利獲證比率之重要因素,故未進入前百大名單。
Thomson Reuters排名的方法,主要是以四大衡量基準:專利獲證比率(patent approval success rate),專利組合對於全球的影響(global reach of patent portfolio),對文獻引用的專利影響(patent influence in literature citation)及專利總數量(overall patent volume),選出前百大名單,如:Apple,Microsoft,Intel,LG和Motorola,全文內容可參考http://www.top100innovators.com/。
歐盟執委會(European Commission, EC)於2019年12月18日發布《2019歐盟產業研發投資計分板》(The 2019 EU Industrial R&D Investment Scoreboard)。產業研發投資計分板是歐盟每年出具一次的報告,2019年計分板報告包含2500家在2018-2019年間投入最多研發資金的企業,分別位於全球44個國家/地區,每一企業的研發投資金額超過3000萬歐元,總計約為8234億歐元,為全球研發支出的90%。在這2500家企業中,551家來自歐盟公司,為投資總額的25%;769家來自美國,為投資總額的38%;318家來自日本,佔13%;507家中國公司,佔12%。 報告中指出,2018年企業研發投資總額較2017年增加8.9%,主要是中國在全球研發資金投入比例不斷增加。另外,研發投資高度集中於大型企業;在這2500家企業中,前10大、前50大企業分別佔研發總額的15%和40%。前50大企業中,最多者為美國企業22家和歐盟企業17家。再從研發投資領域觀察,前三大領域分別為資通訊產業(38.7%)、健康(20.7%)和汽車產業(17.2%),佔總量的76.6%。但每一個國家重視的領域不盡相同,例如歐盟投資20%在資通訊、21.6%在健康、31%汽車,而美國的資通訊研發投資佔了52.8%、26.7%在健康,僅有7.6%在汽車。 再從個別企業研發投資排名來看,前四大企業分別為Alphabet、Samsung、Microsoft和Volkswagen。另外,報告統計在過去的15年中,有8家企業在全球研發投資金額排名中上升了70名以上,分別為:Alphabet、華為、蘋果、Facebook、阿里巴巴、Celgene、Gilead Sciences和德國馬牌;也代表這15年間資通訊、生技與汽車產業發展的重要性。
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。
歐巴馬宣布將立法保護學生數位隱私權美國總統歐巴馬日前表示其將訂立「學生數位隱私法」(The Student Digital Privacy Act)以確保因教育目的而被蒐集之學生個人資料將不會被用於無關之用途。換言之,該法將禁止,例如,利用所蒐集資料對學生進行精準行銷的行為,但仍會許可蒐集者利用所蒐集資料改善其所提供之軟硬體教育設備或用以幫助學生之學習品質。 針對學生之隱私保護,目前於聯邦層級至少已有家庭教育權利與隱私法(Family Educational Rights and Privacy Act,FERPA),該法及其授權法令雖賦予學生及其家長對學校所保有之教育紀錄(educational record)之蒐集、使用有知情同意權及其他如修正教育紀錄之權利。但FERPA也列了相當多的例外情形,例如,醫療資料、受雇紀錄等均不在教育紀錄之列;此外,學校亦可不經同意即公布學生的姓名、電子郵件、出生地、主修、預計畢業日期等資料。 學生數位隱私法未來如能獲國會通過成為法律,該法與FERPA的異同,及其內容與施行實務是否確有助於學生隱私之改善,仍有待觀察。
美國政府管考辦公室提出醫療產業資訊化政策評價報告美國之政府管考辦公室( Government Accountability Office )針對聯邦政府推動醫療產業導入資訊應用之相關措施及作為,九月初向參議院政府再造委員會( Committee on Government Reform, House of Representatives )下轄之聯邦人事暨組織次委員會( the Subcommittee on Federal Workforce and Agency Organization )提出報告,綜合回顧 2004 以來之各項政策宣示及執行規劃,指出目前猶有未足之處以及今後適宜更加留意之方向。 簡言之,醫療產業導入資訊應用,可望帶來降低營運成本,提升經營效率,防免發生過誤,維護病患安全等諸多實益,已為各界所共認。另由於聯邦政府介入醫療產業之程度與影響層面既深且廣,不僅本諸規制角度主管產業,更推動諸多施政,投入大量資金,提供老人、傷殘、兒童、低收入戶、原住民、退伍軍人、退休公職人員等不同社會族群各式相關服務,從而責成聯邦政府領銜推動醫療產業導入資訊應用,藉此提升醫療之品質及效率,應屬妥適。 自 2004 年提出行動綱領以降,聯邦政府即已陸續接櫫各項目標及其實施策略,並區分病歷資料格式、傳輸互通標準、網路基礎架構、隱私安全議題、公衛服務整合等面向分別開展,獲致相當成效。惟據管考辦公室之分析,既有之政策措施及各項作為,似乏詳盡之細部規劃及具體之實踐要項可資遵循,亦無妥善之績效評比指標以利參考。由是觀之,迄今之努力及其成果固值稱許,然就 2014 年普遍採用電子病歷並且得以交流互通之願景而言,還有很多需要努力的地方。