英國Ofcom對媒體多元性標準徵求公眾意見

  2011年3月,英國文化、奧運、媒體與體育大臣(Secretary of State for Culture, Olympics, Media and Sport)Jeremy Hunt原已同意跨國媒體集團News Corporation併購英國天空廣播公司British Sky Broadcasting Group(BSkyB)並進行後續之審議流程。但在同年7月爆出News Corporation旗下的英國世界新聞報竊聽醜聞後,News Corporation立即取消該項併購申請。

  在此一事件影響下,Jeremy Hunt要求英國電信主管機關Ofcom(Office of communications)對於跨媒體多元性管制架構進行檢討。現行媒體多元性管制主要在於同媒體之間合併必須通過公眾利益測試(public interest test),並有國家跨媒體所有權限制。Ofcom徵求意見如下:
1.跨平台媒體多元性如何測量,推荐最好方法為何?
2.在新聞市場中可否設定一絕對的市場佔有率限制?
3.在沒有合併案件的情形下,是否有其他事件可引發媒體多元性的持續追蹤、誰以及如何進行追蹤?
4.媒體多元性測量是否包含網站?
5.測量是否包含BBC?

  Ofcom將於2011年11月18日截止收件,並於2012年初提出修改之方向。

相關連結
※ 英國Ofcom對媒體多元性標準徵求公眾意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5597&no=66&tp=1 (最後瀏覽日:2025/04/04)
引註此篇文章
你可能還會想看
美國眾議院發布反壟斷五大法案,恢復數位市場競爭並防堵科技平台壟斷

  美國眾議院反壟斷委員會於2021年6月11日宣布五大反壟斷立法議案,目標是透過立法提升消費者、勞工和中小企業競爭空間,防止大型科技平台壟斷數位市場。2019年美國國會反壟斷委員會調查互聯網巨頭Amazon、Google、Facebook、Apple(GAFA)涉嫌濫用市場支配地位進行壟斷、抑制競爭、侵害用戶隱私、破壞新聞出版多元化。2020年10月發布《數位市場競爭調查》(Investigation of Competition In Digital Markets)強調恢復數位經濟市場競爭力重要性。2021年美國眾議院隨即提出五大反壟斷改革法案具體落實政策方向。 終止平台壟斷法案(Ending Platform Monopolies Act) 防止占主導地位的平台利用其對多個業務的控制能力,由董事或受託人持有公司25%以上的股票、盈利或資產,或以其他方式掌握實質控制權,要求用戶使用其平台購買產品或服務進而取得優勢地位。 美國選擇與創新線上法案(American Choice and Innovation Online Act) 禁止平台的歧視行為,包括使自家產品、服務及業務在平台上享有對手沒有的競爭優勢,禁止自我偏好或歧視其他同類業者之行為。 平台競爭與機會法案(Platform Competition and Opportunity Act) 禁止具獨占優勢平台藉由收購其他具競爭力對手,以擴大或鞏固線上平台市場力量。 透過啟動服務交換強化相容性和競爭力法案(Augmenting Compatibility and Competition by Enabling Service Switching Act) 透過啟動服務交換,滿足互操作性和資料可攜性,降低企業和消費者進入壁壘與轉換成本,使資料更容易移動到其他平台。 併購申報費現代化法案(Merger Filing Fee Modernization Act) 提高企業向政府申請併購案之審議費用,例如超過50億美金以上併購案審議費用從美金28萬提升至225萬,確保美國司法部和聯邦貿易委員會執行反壟斷資源。

美國交通部針對聯邦自駕車政策3.0徵集公眾意見

  2018年1月10號,美國交通部部長趙小蘭於出席內華達州拉斯維加斯之消費者科技聯盟(Consumer Technology Association)大會時表示,美國交通部正在研擬發布新版之聯邦自駕車政策3.0(Federal Automated Vehicle Policy 3.0, FAVP3.0)以因應自動駕駛技術於未來對安全性、機動性與消費者權益之衝擊。該聯邦自駕車政策3.0將會是一個綜合整體運輸業概況之自動駕駛政策,其將讓自動化運輸系統,包括,車子、貨車、輕軌、基礎設施與港口得以安全的整合。   為了達成上述目的,且讓公眾的意見得以協助辨識美國聯邦法規必須配合修正之部分,並鼓勵更多的創新研發。美國交通部於其網站上也發起了數個自動化車輛技術之意見徵集,讓其能更準確的找出當前美國法規對於自動駕駛技術創新所造成之阻礙。   該意見徵集主要分為四項,第一項是由美國交通部聯邦公路管理局(Federal Highway Administration, FHWA)主管,針對如何將自動駕駛系統整合進入公路運輸系統之資訊徵求書(Request for Information, RFI)。   第二項與第三項則是由聯邦公共運輸局(Federal Transit Administration, FTA)分別針對自駕巴士研究計畫(Automated Transit Buses Research Program)與移除相關障礙所發出之意見徵詢書(Request for Comments, RFC)。   最後一項則是由交通部國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)主管,針對移除自駕車法規障礙所發布之意見徵詢。

簡介人工智慧的智慧財產權保護趨勢

近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP