德國政府於2018年7月18公佈「聯邦政府人工智慧戰略要點」(Key points for a Federal Government Strategy on Artificial Intelligence),係由德國聯邦經濟事務及能源部、聯邦教育及研究部,與聯邦勞動及社會事務部共同撰寫而成。 德國政府表示該要點將作為推動人工智慧技術與產業發展的基礎方針,並希望以負責任的方式以及朝向社會利益發展的方向進行人工智慧開發與應用。 德國人工智慧戰略要點摘要如下: 1. 研究能量:必須大幅增加研究支出並且爭取世界一流人才。 2. 人工智慧能力應泛分佈在社會各處:各學科與產業領域皆需要人工智慧。 3. 資料作為人工智慧發展的基礎:資料是人工智慧發展的重要關鍵,德國的資料發展重點將放在資料品質的強化。 4. 基礎設施:人工智慧中重要的技術「深度學習」,不僅需要大量資料,同時還需要強大的計算能力,德國需要加強計算能力的硬體設備。 5. 經濟應用:德國數位化發展的下一步需要仰賴人工智慧技術,尤其是中小企業採納人工智慧技術方面將會是焦點之一。 6. 社會法制:人工智慧發展過程中牽涉許多道德以及法制、監管議題,德國政府認為這些都必須請不同利害關係人共同公開討論。 7. 國際合作:德國作為歐盟會員國之一,未來的人工智慧發展將力求與歐盟各國合作。 整體而言,德國的人工智慧戰略著重在建立人工智慧生態系統,並強調人與機器之間的合作關係,為人工智慧產業發展奠定良好基礎。德國政府將基於此要點繼續制定進一步的人工智慧戰略,並預計將於2018年12月公佈德國的人工智慧戰略完整報告。
美國啟動「綠色按鈕」機制,落實21世紀智慧電網政策綱領「綠色按鈕」(Green Button)已於今年(2012)1月正式啟動,運用新的智慧電網科技,容許約六百萬加州用電戶在網站上按下一個按鈕後,便可及時獲取他們的詳細能源使用資訊,同時,其他加州地區公用事業業者也承諾在同年內讓另外十二萬用電戶也可得到同樣的服務,歐巴馬政府同時也於今年3月22日宣布,全美其他地區九個主要公用事業業者也承諾加入「綠色按鈕」的行動中,提供這個新興服務給超過一千五百萬用電戶,許多其他相關業者也宣布加入行動,積極投入發展與「綠色按鈕」相容的應用軟體與服務,提供更多節約能源的方法。 「綠色按鈕」這個行動是由智慧電網互通性專家諮詢小組(SGIP)所主導,這個由美國國家標準與技術研究院(NIST)創立於2009年的工作小組,成員超過750個不同種類的相關業者及政府機關,目的在於致力協調智慧型電網發展的標準與互通性。而為了響應政府的號召—希望業者能提供消費者易懂的能源使用資訊,藉由淺顯易懂的方法讓消費者可以便利地獲取自己對於能源的使用數據,進而設法使消費者減少在能源上的花費,乃係美國政府於去年6月(2011)提出的21世紀智慧電網政策綱領中重要的政策之一。 美國環保署也已經加入了「綠色按鈕」的行列,將利用「綠色按鈕」的數據來幫助商業建築所有人評估他們的耗能與其推動的「能源之星」(Energy Star)認證計畫相結合,給予「能源之星」績效分數(performance scores)。
歐盟結合ICT推動電動車整合示範計畫,並公布「2011交通政策白皮書」歐盟執委會(European Commission)於去(2011)年11月底宣布,與歐洲電機工程領導組織Orgalime聯盟進行合作,將設立「電動車整合建設示範計畫」,加強推動業界示範營運實務經驗,並結合ICT技術發展,推動歐洲電動車蓬勃發展。歐盟於2011年6月所制定「2011交通政策白皮書--(2011 White Paper on Transport)」,3月所公告「歐盟2050交通遠景(Transport 2050)」規劃政策均係將「電動車產業」視為推動歐盟交通運輸政策之重要支柱;並且,歐盟更是於同年3月所制訂「2011能源效率推動方案(Energy Efficiency Plan 2011)」,明訂運輸專章,宣示將落實推動境內電動車產業相關投資、技術發展及基礎建設。 並且,歐盟對於電動車推動策略,係定位為結合ICT技術與交通工具之重要實踐。由歐盟執委會所支持成立的歐洲綠色車輛促進組織--「ICT4FEV」,其於2010年12月所公布「ICT for the Fully Electric Vehicle」及所2009年10月所制訂「European Roadmap Electrification of Road Transport」,宣示電動車之推動,對於節約能源與氣候保護的關鍵影響因素,並且規劃於科技領域各項研發工作,強化ICT技術、相關零組件及其系統,可扮演之重要角色,包括儲能系統、運輸技術、車輛整合、安全、電網整合運輸系統整合等。ICT4FEV並宣示未來將持續推動及檢視政府應備規範,並進行相關法令之調修工作。
行動生活之隱私爭議-現行法制能否妥善處理位置資訊衍生問題