Google為了提供客製化的廣告服務,利用搜尋引擎、Youtube、Gmail及其他服務,在事前未告知並取得使用者同意的情況下,蒐集人們的資料(包括搜尋紀錄、電子郵件、第三方網站軌跡資料、位置資訊及影片觀看紀錄等)。歐洲各國隱私監管機構對此表示憂心,認為Google恐將以前所未有的規模,掌握使用者的一舉一動,紛紛投入調查工作,並相繼認為Google確實已經違反其內國法。 荷蘭資料保護局(Data Protection Authority, DPA)主席Jacob Kohnstamm於2014年12月15日表示,使用者有權知悉他們在某一平台輸入的資料,其他平台也可以利用它們,並要求Google在合併不同服務所取得的個人資料前,應以跳出不同視窗等方式供使用者點選,俾以取得其明示同意(unambiguous consent),僅只透過一般隱私條款,並不足以提供當事人清楚且一致的資訊(clear and consistent imformation)。 DPA希望Google不要再考驗他們的耐心,並揚言對Google處以1500萬歐元罰鍰,除非它在2015年2月底前完成改善。但面對DPA的最後通牒,Google僅回應,他們已經大幅修正了隱私權政策,很遺憾DPA仍作出這樣的決定,但他們將儘快與歐洲各國隱私監管機構就後續修訂方案進行討論。
日本修法防止元宇宙品牌商標仿冒日本政府於今(2023)年3月10日,閣議通過不正競爭防止法等一系列智財法律修正案,包括商標法、不正競爭防止法、意匠法(設計專利)、特許法(發明專利)、實用新案法(新型專利)、工業所有權特例法等智財相關六法修正案。5月11日送第211回國會(眾議院)審議中。 本次智財法律修正案,係為求智慧財產進行適當的保護與提升智慧財產制度的便利性,並確保國內外事業者間公平競爭,修法擴充他人商品型態的仿冒態樣,創設基於商標權人的同意下近似商標註冊制度;設計專利的新穎性喪失例外適用之證明手續的簡化、發明專利等國際申請優先權主張之手續電子化,另對外國公務員贈賄罪之罰金上限提高等措施。 為強化數位化多元事業品牌保護,除商標法修法以擴充可取得註冊商標,針對防止數位空間之仿冒行為,不正競爭防止法規定,自原始商品於日本首次銷售起三年內(不正競爭防止法第19條第1款第5項),禁止銷售與該商品非常近似的仿冒商品,然修法前前述行為態樣不適用於數位空間。本次修法為防止數位空間之仿冒行為,規定商品型態的仿冒行為,即使係發生於元宇宙等數位空間亦構成不正競爭行為,可行使侵害排除及侵害防止請求權(不正競爭防止法第2條第1款第3項)。 日本透過智財修法將商標保護觸角延伸入虛擬空間之作法,可作為我國未來政策推動與修法之借鑑。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國參議院提出促進生技學名藥競爭法案生技藥品是植基於活體生物的原理所開發出來的治療藥品,自第一批生技藥品上市以來,其專利在最近幾年已陸續到期,因此生技業者對於推出這些生物製品的學名藥版本(generic versions of biologics,以下簡稱生技學名藥),躍躍欲試。然而,美國當前的學名藥法規—藥品價格競爭及專利回復法(Drug Price Competition and Patent Restoration Act, 又名Hatch-Waxman Act, HWA),乃是針對化學藥品的學名藥版本所制定的法規,此類學名藥與生技學名藥並不相同,因此既有的學名藥法規並不能適用於生技學名藥,生技業者無不引頸企盼政府部門通過新的法規,以使生技學名藥儘速上市。 美國參議院最近提出一項生技學名藥法案—生技製品價格競爭與創新法(Biologics Price Competition and Innovation Act, BPCIA),一如HWA,BPCIA的內容也呈現出各種利益折衝的色彩,法案一方面賦予FDA對生技學名藥進行審核的新權限,並藉由減少臨床試驗之進行,加速生技學名藥的上市;另一方面,為避免低價的生技學名藥會對品牌藥的銷售產生衝擊,法案也有針對生技研發公司的研發誘因設計,以鼓勵其持續投入資金,開發更多的生技治療藥品。未來生技學名藥廠需要配合FDA所規劃的風險管理計劃(該計劃的相關立法目前尚待眾議院審議),故生技學名藥廠於其生技學名藥上市後,仍有進行臨床試驗之義務。 法案中最具爭議的條文在於,究竟應給予生技研發公司多長的銷售獨家銷售權(market exclusivity),始得允許生技學名藥廠加入市場競爭,生技研發公司與生技學名藥廠對此的歧見甚大,前者主張十四年,後者則認為五年的時間已足,目前法案訂為十二年。另一個不易處理的議題,則是藥師如何處理此類的生技學名藥,根據目前的法案內容,未來藥師亦可不經徵詢醫師而以生技學名藥代替之。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。