歐盟結合ICT推動電動車整合示範計畫,並公布「2011交通政策白皮書」

  歐盟執委會(European Commission)於去(2011)年11月底宣布,與歐洲電機工程領導組織Orgalime聯盟進行合作,將設立「電動車整合建設示範計畫」,加強推動業界示範營運實務經驗,並結合ICT技術發展,推動歐洲電動車蓬勃發展。歐盟於2011年6月所制定「2011交通政策白皮書--(2011 White Paper on Transport)」,3月所公告「歐盟2050交通遠景(Transport 2050)」規劃政策均係將「電動車產業」視為推動歐盟交通運輸政策之重要支柱;並且,歐盟更是於同年3月所制訂「2011能源效率推動方案(Energy Efficiency Plan 2011)」,明訂運輸專章,宣示將落實推動境內電動車產業相關投資、技術發展及基礎建設。

  並且,歐盟對於電動車推動策略,係定位為結合ICT技術與交通工具之重要實踐。由歐盟執委會所支持成立的歐洲綠色車輛促進組織--「ICT4FEV」,其於2010年12月所公布「ICT for the Fully Electric Vehicle」及所2009年10月所制訂「European Roadmap Electrification of Road Transport」,宣示電動車之推動,對於節約能源與氣候保護的關鍵影響因素,並且規劃於科技領域各項研發工作,強化ICT技術、相關零組件及其系統,可扮演之重要角色,包括儲能系統、運輸技術、車輛整合、安全、電網整合運輸系統整合等。ICT4FEV並宣示未來將持續推動及檢視政府應備規範,並進行相關法令之調修工作。

相關連結
相關附件
※ 歐盟結合ICT推動電動車整合示範計畫,並公布「2011交通政策白皮書」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5635&no=64&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
被遺忘權的地域化與全球化

  2014年5月,歐洲法院(European Court of Justice)判決認定,歐洲人民有權要求搜尋引擎移除特定搜尋結果之聯結,亦即承認了ㄧ項新穎且從未見過的網路權利─被遺忘權(The Right to Be Forgotten)。對於此判決,正反論述各有見地,贊成有如隱私權的提倡者,因恐網路紀錄永不流失,網路網羅並刺探生活細節的功能將嚴重影響隱私權;反對者則有如言論自由學派,憂慮訊息的有限揭露將影響人民獲得資訊的自由與正確性。該歐州法院判決效力僅限定於歐洲網域,例如,若有一法國人要求移除其破產的資訊,則Google僅會在法國google.fr和德國google.de的網域中移除該搜尋結果,至於google.com則因被視為美國網域而能免於移除。然而,近來法國國家資訊自由委員會(CNIL)積極要求Google一旦確定移除某項聯結,其效力應及於所有的網域而一併移除。   為回應法國主管機關之要求,有鑒於有高達百分之97的法國人至今仍多習慣使用其歐洲國內網域的搜尋引擎,再加上沒有一個國家有權限要求或限制他國人民如何獲得資訊,Google認為法國的要求無必要,且不成比例,故不贊同法國國家資訊自由委員會的主張並要求其撤回聲明。由於Google未於15日內依指示遵循,法國主管機關將可考慮後續制裁。因此,被遺忘權目前仍舊維持地域化,然而,即便仍維持現狀,但歐洲法院的判決亦已造成網路資訊的分割,資訊的獲得將因網域的差別而有如小國林立。

美國「刑事鑑識演算法草案」

  美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。

生物識別技術走進零售業

  近期幾家大信用卡公司遭駭客入侵,使得消費者受到了越來越大的身份被盜用的威脅。對此,能使購物更加安全的技術,特別是生物識別技術,包括電影中常見到的虹膜掃描,以及相對普及的指紋,聲音,臉部特徵識別等,越來越引發了人們的興趣。   目前,美國第二大零售連鎖店 Albertson 已經和其他數百個零售商一起加入了生物識別付款的試點行列。該公司發言人表示,新付款方式則大大加速了結帳的速度;另外也可以自動識別是否賣菸酒給未成年人。   不過生物識別技術的根本的缺陷在於隱私問題,因?這項技術意味著對個人資訊的集中儲存。而這個系統必然會成?駭客和其他居心不良者的「蜜罐」,一旦這個儲存系統被攻破,並將受害者的生物資訊惡意更改,受害者將面臨身份被終極盜用的噩夢。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP