如何確保兒童上網安全,為歐盟數位議程(Digital Agenda)的七大目標之一。而近年來網路內容蓬勃與快速發展,更大幅加速了兒童上網的趨勢。據歐盟執委會於2011年12月的公開資料顯示(IP/11/1485),歐洲兒童平均7歲即開始接觸網路。目前有超過38%的9-12歲兒童在社交網站上有個人資訊,有30%以上的兒童是藉由行動裝置上網。如此高的上網比率,讓各業者有共識以提供兒童更好的上網環境。由蘋果、微軟、Google等跨國企業為首的二十餘家業者組成了自律組織,以提供歐盟地區的兒童更好網路內容環境而努力。
該自律聯盟於2011年12月正式成立,並以五個面向採取相關行動:簡單且強大的工具-能夠搜尋於任何裝置上可能對孩童有害的內容;分齡隱私設定-使用者可限定公布資訊予特定族群;更廣泛的內容分級:提供家長易於理解的年齡內容分級;更廣泛的家長控制工具-積極推動使用者有善的工具;兒童色情內容有效移除-與執法單位與保護熱線等積極合作,將兒童色情內容快速下架。
各業者承諾就其營業項目、產品、服務內容等皆須符合此自律規範,並成立工作小組以協助歐盟執委會處理相關議題。
因應生成式AI(Generative AI)快速發展,日本經產省和總務省彙整及更新自2017年起陸續發布之各項AI指引,於2024年1月19日共同公布「AI業者指引草案」(AI事業者ガイドライン案,以下簡稱指引),公開向民眾徵集意見。上述草案除提出AI業者應遵守以人為本、安全性、公平性、隱私保護、透明性、問責性、公平競爭、創新等共通性原則外,並進一步針對AI開發者(AI Developer)、AI提供者(AI Provider)及AI利用者(AI Business User)提出具體注意事項,簡述如下: (1)AI開發者:研發AI系統之業者。由於在開發階段設計或變更AI模型將影響後續使用,故指引認為開發者應事先採取可能對策,並在倫理和風險之間進行權衡,避免因重視正確性而侵害隱私或公平性,或因過度在意隱私保護而影響透明性。此外,開發者應盡量保留紀錄,以便於預期外事故發生時可以進行說明。 (2)AI提供者:向AI使用者或非業務上使用者提供AI系統、產品或服務之業者。提供者應以系統順利運作及正常使用為前提,提供AI系統和服務,並避免侵害利害關係人之利益。 (3)AI使用者:基於商業活動使用AI系統或服務之業者。使用者應於提供者所設定之範圍內使用AI,以最大限度發揮AI效益,提高業務效率及生產力。
以『江蘇科技改革30條』解析中國大陸科研經費改革制度中國大陸近年致力發展其國內技術研究產業,但在基礎研究經費申請制度上,長期存在一些結構問題,如在科研資助、實施和成果傳播三個階段。故自2017年起,中國大陸陸續修正關於科研經費制度,以使科技研究人員得以順利進行科研項目。截至目前,依中國大陸國發〔2018〕25號文為基準,江蘇省推出《關於深化科技體制機制改革推動高品質發展若干政策》(下簡稱『江蘇科技改革30條』),並出台完整的實用手冊 。 此次江蘇科技改革30條,明確落實中央對科研經費鬆綁及對科研結果獎勵與容錯的改革措施。在科研經費可直接列支項目的直接預算,如設備費、材料費等,從原本九個項目改合併為五個項目,科目經費支出將不再受比例限制;另在無法直接羅列預算項目的間接預算上,如績效支出等費用則精簡列支項目,提高間接費用核定比例。在科研結果獎勵與容錯改革上,建立原創成果獎勵機制、創新補償機制、援助機制及免責機制。 中國大陸科研經費長期採用嚴格預算制,直接預算需按照法律規範羅列,然間接預算部分常使研究人員因不知如何羅列,而導致研究經費中斷或減少。對於較易失敗的基礎研究上,研究人員則擔心在階段性考核中因錯誤致使研發經費無法取得,進而將錯就錯,謊報研究成果。此次江蘇科技改革30條修正,解決了上述科研經費制度的部分問題,並具體規範了實務上的操作。然各部會間如何解決關於監管經費結餘規範之法律衝突,及科研成果容錯機制之評價,仍待後續觀察。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
FCC將電力線寬頻上網(BPL, Broadband over Power Line)服務分類為資訊服務FCC經過討論與投票,正式發佈命令將電力線寬頻上網服務分類為跨州資訊服務(interstate information service),而非電信服務,其他寬頻上網科技包括DSL、有線電纜線數據機寬頻上網亦被FCC分類為資訊服務。 過去幾年來,FCC一直大力支持電力線寬頻上網服務,期望電力線寬頻上網服務可以進入寬頻服務市場,與DSL和有線電視纜線數據機寬頻上網服務競爭,以增加寬頻服務市場之競爭,提高美國之寬頻普及率。而就此次所發佈之命令,FCC認為,將電力線寬頻上網分類為資訊服務將可使電力線寬頻上網服務受到較低的管制,有助於達成隨時隨地提供所有美國民眾寬頻接取之目標。其次,FCC在數位匯流時代之管制乃是期望能對於各種不同技術之寬頻接取平台給予一致的管制措施,並且對於相同之服務採取相同的管制方式。基於上述原因,FCC此次將電力線寬頻上網分類為資訊服務並不讓人感到意外。 FCC主席Kevin J. Martin進一步在其聲明中表示,雖然目前電力線寬頻上網人口並不多,然在2005年其成長率卻將近200%,顯見電力線寬頻上網服務之市場潛力不容忽視,將可幫助達成美國總統定下於2007年底前隨時隨地提供全國民眾寬頻網路接取之目標。