歐洲自律聯盟成立以塑造對兒童更好的網路環境

  如何確保兒童上網安全,為歐盟數位議程(Digital Agenda)的七大目標之一。而近年來網路內容蓬勃與快速發展,更大幅加速了兒童上網的趨勢。據歐盟執委會於2011年12月的公開資料顯示(IP/11/1485),歐洲兒童平均7歲即開始接觸網路。目前有超過38%的9-12歲兒童在社交網站上有個人資訊,有30%以上的兒童是藉由行動裝置上網。如此高的上網比率,讓各業者有共識以提供兒童更好的上網環境。由蘋果、微軟、Google等跨國企業為首的二十餘家業者組成了自律組織,以提供歐盟地區的兒童更好網路內容環境而努力。

  該自律聯盟於2011年12月正式成立,並以五個面向採取相關行動:簡單且強大的工具-能夠搜尋於任何裝置上可能對孩童有害的內容;分齡隱私設定-使用者可限定公布資訊予特定族群;更廣泛的內容分級:提供家長易於理解的年齡內容分級;更廣泛的家長控制工具-積極推動使用者有善的工具;兒童色情內容有效移除-與執法單位與保護熱線等積極合作,將兒童色情內容快速下架。

  各業者承諾就其營業項目、產品、服務內容等皆須符合此自律規範,並成立工作小組以協助歐盟執委會處理相關議題。

相關連結
※ 歐洲自律聯盟成立以塑造對兒童更好的網路環境, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5640&no=64&tp=1 (最後瀏覽日:2025/12/29)
引註此篇文章
你可能還會想看
從RFID的應用談科技變遷下的人權議題

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

澳洲國家交通委員會針對駕駛法規之修正進行公眾諮詢,聚焦自駕系統實體法律義務

  澳洲國家交通委員會(National Transport Commission, NTC)於2017年10月3日提出「修正駕駛法律以支持自動駕駛車輛(Changing driving laws to support automated vehicles)」討論文件,向相關政府機關與業界徵詢修正駕駛法規之意見。此文件目的在於探討法規改革選項,並釐清目前針對駕駛人與駕駛行為法規對於自駕車之適用,並試圖為自動駕駛系統實體(automated driving system entities, ADSEs)建立法律義務。文件中並指出改革上應注意以下議題: 目前車輛法規皆以人類駕駛為前提; 自動駕駛系統並不具有法律人格,無法為其行為負法律責任; 目前的法律並未提供法律實體之定義或規範(即自動駕駛系統實體ADSEs)來為自動駕駛系統行動負責; 目前有些法律上人類駕駛應負之義務,無法直接於自動駕駛時由ADSEs負擔; 車輛之安全義務於自動駕駛時,可能需由非駕駛之他人執行; 法律中並未定義自動駕駛系統車輛的「控制」與「恰當控制」; 目前沒有規範何時人類應有義務將駕駛控制權力自自動駕駛系統轉移回來,來確保人類駕駛保持足夠之警覺性; 目前的遵循與實施規範可能不足以確保自動駕駛系統的安全運作。   NTC並提出建議應定義自動駕駛系統之法律實體,重新規範人類與自動駕駛系統法律實體間的義務。澳洲國家交通委員會將進一步將諮詢結果與法律改革選項於2018年5月提供給澳洲交通部。

美國第三州!科羅拉多州正式通過《科羅拉多州隱私法》

  美國科羅拉多州州長於2021年7月正式簽署《科羅拉多州隱私法》(Colorado Privacy Act, CPA)草案,科羅拉多州正式成為美國第三個制定全面性隱私專法的州,該法將於2023年7月1日施行。   隨著全球化及科技快速發展,以及大數據的應用趨勢,資料的蒐集、處理、利用規模及範圍逐漸擴大,全美各地隱私保護規範遍地開花,期待能促使企業在「保護個人資料」與「資料自由流通」及「資料商業運用」中取得平衡。 2018年美國加州首先制定《加州消費者隱私保護法》(California Consumer Privacy Act, CCPA)成為全美第一州級隱私保護專法後,包含華盛頓州、伊利諾州、紐約州等,也都提出各該州級隱私保護法案,而美國維吉尼亞州議會於今年2月通過《消費者資料保護法》(Consumer Data Protection Act, CDPA)法案,並在3月經由州長簽署,正式成為美國第二個擁有隱私保護專法的州,該法預計於2023年1月1日生效。   科羅拉多州於今年6月將CPA草案送交州長簽署後,於7月順利成為第三個通過隱私保護專法的州。一旦CPA生效,消費者除將享有近用權(right of access)、更正權(right of correct)、刪除權(right of delete)、資料可攜權(right of data portability)外;CPA規定在資料控制者對其消費者進行目標式廣告(targeted advertising)、銷售消費者個人資料,或者將對消費者決策產生重大影響時,消費者享有選擇退出權(right to opt out)。   整體而言,儘管 CPA 與CCPA及CDPA規範相似,在隱私保護規範上可能不是特別具有開創性,但CPA反映了美國各州強化隱私保護的趨勢與決心。舉例而言,去(2020)年不僅美國大選結果受矚目,美國各州隱私保護相關公投案,包含《加州第24號提案》、麻州《汽機車機械資料》、密西根州《電子資訊搜索票》及緬因州波特蘭市《臉部辨識禁令》也獲通過。美國在尚未具有統一聯邦隱私保護法下,透過州級隱私立法,保有各州特色並作為各州隱私保護執法依據。

TOP