歐盟執委會(European Commission)於去(2011)年12月公布「2050能源發展藍圖(Energy Roadmap 2050: a secure, competitive and low-carbon energy sector is possible)」,主要係執委會承諾將推動歐盟於2050年前達成溫室氣體80-95%減量目標(相較於1990年排放基準),建立具競爭力之低碳經濟社會,所以規劃擬訂「2050能源發展藍圖」,期望能導引歐盟走向「無碳化目標(Decarbonisation Objective)」,同時並確保能源供應安全及保持國際競爭優勢。
並且,奠基於之前「歐洲2020發展策略(Europe 2020)」所設立推動「20-20-20」溫室氣體減量及能源效率目標,歐盟執委會認為進一步擬訂「後2020時期策略(Post-2020 Strategies)」是非常亟需的,並且認為以現有規劃持續推動,2050年僅將達成減少40%減量目標,對於歐盟建立成為無碳化社會之目標,是非常不足夠的,所以擬訂此一發展藍圖。
「2050能源發展藍圖」主要設定了五項無碳化發展願景(Scenarios):包含提高能源效率(High Energy Efficiency)、多元化能源技術(Diversified Supply Technologies)、提昇再生能源比例(High Renewable Energy Sources)、 因應碳捕捉發展(Delayed CCS)、 降低核能發電(Low Nuclear)等,並對於「2020至2050發展規劃(Moving from 2020 to 2050)」,研析諸如提昇能源節省與管理需求(Energy Saving and Managing Demand)、移轉使用再生能源發電(Switching to Renewable Energy Sources)、天然氣過渡重要角色(Gas Plays a Key Role in the Transition)、智慧能源技術及儲存發展(Smart Technology, Storage and Alternative Fuels)、電力管理新思考(New Ways to Manage Electricity)、整合區域發電資源與集中系統(Integrating Local Resources and Centralised Systems)等重要議題。未來歐盟執委會如何進一步依據「2050能源發展藍圖」規劃制訂推動措施及配套機制,值得持續觀察研析。
本文為「經濟部產業技術司科技專案成果」
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
美國「2009年經濟復甦暨再投資法」大幅度修正HIPAA隱私權條款2009年02月17日美國總統簽署通過「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, ARRA),將醫療產業列為重點發展項目之ㄧ,擬由政府預算進行醫療資訊科技化計畫,俾使電子病歷的傳輸與交換得兼顧效率及安全。而以規範醫療資訊安全為主的「醫療保險可攜及責任法」之隱私權條款(HIPAA, Privacy Rule),亦因此有重大修正。 其中,最主要的變革在於擴充HIPAA的責任主體,由原有的健康照護業者、健康計畫業者及健康照護資訊交換業者,擴充至凡因業務關係而可能接觸個人健康資訊的個人或業者,包含藥劑給付管理公司、代理人及保險業者等,這些機構或個人原本與醫療院所或病患間係依據契約關係進行責任規範,但被納入HIPAA的責任主體範圍後,則需依此負擔民、刑事責任。 而於加強資訊自主權部份,亦有數個重要變革如下:(一)責任主體之通知義務:依據新規定,資料未經授權被取得、使用或揭露,或有受侵害之虞時,責任主體應即早以適切管道通知資訊主體有關被害之情事,以防備後續可能發生的損害。(二)資訊主體之紀錄調閱權:以往資料保管單位得拒絕個人調閱健康資料運用紀錄之請求,有鑒於病歷電子化後,保存及揭露相關紀錄已不會造成過重負擔;依據新規定,資訊主體有權調閱近三年內個人健康資料被使用次數及目的等紀錄。(三)資訊主體資料揭露之拒絕權:以往責任主體得逕行提供個人醫療資訊作為治療、計費及照護相關目的之使用,無論資訊主體曾表達拒絕之意與否;依據新規定,資訊主體得禁止其向保險人揭露相關資訊,除非保險人已全額支付醫療費用。 以上HIPAA之新增規範,預計於2010年02月17日正式施行。
品牌商標命名之實踐與提醒─從杜邦分析要件判斷商標混淆誤認之關鍵陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
大倫敦政府推動城市資料市集,期尋求資料利用及隱私保護間之平衡,建立民眾對資料市集之信賴資料利用之層面越來越廣,且無論是基於商業或公益目的,產生越來越多難題。穿戴式裝置及物聯網的發展,亦使得資料之蒐集利用及界線等問題更顯其重要性。有鑑於此,大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「倫敦城市資料策略」(London City Data Strategy),積極推動「城市資料市集」(City Data Market),期將倫敦打造成世界首屈一指的智慧城市。 增加大眾對資料市集之信賴並減少疑慮乃「倫敦城市資料策略」之一環,近年在英國有一系列新法上路,除新的歐盟資料保護規範(GDPR)外,英國國內有關「開放銀行」(open banking)之新規範,以及已有能源及電信公司參與之MiData initiative等,上述機制均為促使個人更容易掌握其個資被利用之狀況。 大倫敦政府亦推動「倫敦資料交易」(London Data Exchange),大眾可利用此一機制掌握其個資流向。其中有關建置新的數位符號(digital tokens of proof),使民眾未來可利用此等符號證明符合特定資格,例如在道路受檢時,毋須拿出駕照說明個人姓名、地址、出生年月日等資料,利用該等符號,便可判定符合駕駛年齡。 近期,大倫敦政府透過資料科學合作夥伴(Data Science Partnership)推動資料科學倫理架構(Framework for Data Science Ethics),著手研究民眾對資料交易新機制的反應,試圖在資料利用與法律和道德問題間尋求平衡。