美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2022年7月21日發布更新《網路安全資源指南》(A Cybersecurity Resource Guide, NIST SP 800-66r2 ipd)。本指南源自於1996年美國《健康保險流通與責任法》(Health Insurance Portability and Accountability Act, HIPAA)旨在避免未經患者同意或不知情下揭露患者之敏感健康資料,並側重於保護由健康照護組織所建立、接收、維護或傳輸之受保護電子健康資訊(electronic protected health information, ePHI),包括就診紀錄、疫苗接種紀錄、處方箋、實驗室結果等患者資料之機密性、完整性及可用性。其適用對象包含健康照護提供者(Covered Healthcare Providers)、使用電子方式傳送任何健康資料的醫療計畫(Health Plans)、健康照護資料交換機構(Healthcare Clearinghouses)及為協助上述對象提供健康照護服務之業務夥伴(Business Associate)均應遵守。 本指南最初於2005年發布並經2008年修訂(NIST SP 800-66r1 ipd),而本次更新主要為整合其他網路安全相關指南,使本指南與《網路安全框架》(Cybersecurity Framework, NIST SP 800-53)之控制措施等規範保持一致性。具體更新重點包括:(1)簡要概述HIPAA安全規則;(2)為受監管實體在ePHI風險評估與管理上提供指導;(3)確定受監管實體可能考慮作為資訊安全計畫的一部分所實施的典型活動;(4)列出受監管實體在實施HIPAA安全規則之注意事項及其他可用資源,如操作模板、工具等。特別在本指南第三章風險評估與第四章風險管理提供組織處理之流程及控制措施,包括安全管理流程、指定安全責任、員工安全、資訊近用管理、安全意識與培訓、應變計畫、評估及業務夥伴契約等。而在管理方面包括設施權限控管、工作站使用及安全、設備媒體控制;技術方面則包含近用與審計控管、完整性、個人或實體身分驗證及傳輸安全。上述組織要求得由政策、程序規範、業務夥伴契約、團體健康計畫所組成,以助於改善醫療領域的網路安全及隱私保護風險管理。預計本指南更新將徵求公眾意見至2022年9月21日止。
美國寬頻進步報告:寬頻部署有顯著改善但數位落差持續存在根據美國聯邦通訊傳播委員會(Federal Communications Commission, FCC)於2016年之寬頻進步報告,美國現行之標準為業者必須提供下載速度至少達25Mbps與上傳速度至少達3Mbps之寬頻服務,相較於2010年所設立之標準─下載速度至少達4Mbps與上傳速度至少達1Mbps的寬頻服務,顯示出美國在寬頻部署上有明顯的進步。然而,目前仍有3400萬美國人民所使用之寬頻服務並未達到上述FCC所設立之標準(25Mbps/3Mbps)。 這份報告亦顯示,持續之數位落差(digital divide)導致40%生活在鄉村以及部落地區之人民所使用之寬頻服務並未達到上述FCC所設立之標準(25Mbps/3Mbps)。此外,E-rate計畫方案之持續推行,雖使許多學校之網路連線已有顯著改善,但仍有41%之學校未能符合FCC之短期目標,亦即這些學校之寬頻連線仍無法供應數位學習之應用。基於以上理由,2016年之寬頻進步報告總結:寬頻部署並未被適時並合理的(timely and reasonable)適用於全體美國人。 該份報告亦認為當今的通訊服務應以固網及行動寬頻服務(fixed and mobile broadband service)之方式提供,彼此的功能不同並能互補。然而,FCC尚未建立行動寬頻服務標準,因此,行動寬頻之部署尚未能反映在目前之評估。 依據1996年電信法第706條之規定,FCC必須每年報告先進通訊能力之部署,是否讓每位美國人民都能適時且合理的使用。國會所定義之「先進通訊能力」(advanced telecommunications capability)必須具高品質之能力,可讓使用者傳輸以及接收高品質之聲音、數據資料、照片以及影像服務。 此份報告重點總結如下: ●全面部署: 目前仍有3400萬美國人(約10%人口)無法接取固網下載速度至少達25Mbps與上傳速度至少達3Mbps之寬頻服務。然而,相較於去年之5500萬美國人(約17%人口)未能接取該寬頻服務,今年已有顯著的改善。 ●鄉村與城市間之數位落差仍待改善: 仍有39%之鄉村人口(2340萬人)以及41%之部落人口(160萬人)無法接取該寬頻服務(25Mbps/3Mbps)。相較於都市僅有4%之人無法接取該寬頻服務,發展上仍不平等。但相較於去年報告所示,有高達53%鄉村人口以及63%部落人口無法接取寬頻服務,城鄉發展不均之程度已有改善。 ●學校之寬頻速度: 全國僅有59%之學校達到FCC所設立之短期目標,亦即100Mbps可以供1000位學生使用,並有極少數之學校達到長程目標,即1Gbps可供1000位學生使用。 這份報告首次將衛星寬頻服務列入評估,FCC對於衛星寬頻服務適用與固網寬頻服務採用同樣之標準(25Mbps/3Mbps)。然而,在評估過程中,尚未有任合衛星寬頻服務符合FCC所採行之寬頻標準。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
亞太經濟合作組織(APEC)糧食安全政策夥伴關係機制(PPFS)2014年8月14日在北京召開成員會議亞太經濟合作組織(Asia-Pacific Economic Cooperation, APEC)糧食安全政策夥伴關係機制(Policy Partnership on Food Security, PPFS)成員國、APEC秘書處、APEC工商諮詢理事會秘書處、糧農組織代表在北京召開全體成員會議,就亞太糧食安全相關議題與糧食安全政策夥伴關係機制(PPFS)建構進行討論。PPFS為政府部門與民間組織、企業溝通對話之平台,係APEC解決亞太糧食安全所建構之機制,茲就本次會議作成之重點分述如下: 1.亞太經濟合作組織(APEC)糧食安全政策夥伴關係機制(PPFS)全於會中作成3項倡議:第一,加強APEC成員糧農政策對話與交流,協商區域合作的規劃和措施。第二,降低貿易和投資成本,消除貿易壁壘促進糧農貿易。第三,加強各政府、產業與個體農民交流,促進私部門參與糧食安全之商業模式,以利亞太糧食安全之永續。相關糧食安全議題及合作方向包括:糧食生產與技術移轉跨國合作;糧食儲備、供應鏈及降低糧損技術之交流與合作和貿易合作、投資與基礎建設等。 2.本次會議除作成前述宣示性倡議外, 另通過「APEC減少糧食損失和浪費行動計畫」、「APEC糧食安全商業計畫」、「APEC增強糧食標準與質量安全互通行動計畫」、「2020糧食安全路線圖」等修訂文件。其中,「2020糧食安全路線圖」,提及PPFS將致力於降低亞太區域之糧食農損失,並宣示於2020年降低農損總量10%之具體目標(以2011-2012年度之農損總量為比較基準)。