德國漢堡地方法院4月20日針對GEMA控告YouTube一案作出判決(Az. 310 O 461/10),確認影片平台業者著作權法上之義務,預料將為兩造授權金協議過程的僵局,造成一定影響。
本案原告GEMA主張被告YouTube應採取措施,阻止其享有權利之12個影音檔案,繼續透過YouTube平台在德國境內流通。而本案的爭點即在於:對於YouTube平台上由網友上傳、且涉嫌侵害著作權的影片內容,被告移除及防止侵害的責任範圍究竟多大。
本案法院認為,因被告本身並非將違法內容上傳之行為人,無法以德國電信服務法(TMG)第7條規定,課予其侵權行為人責任(Täterhaftung)。但被告因提供、經營平台,對著作權侵害有所「貢獻」,故法院依TMG第10條規定,認定被告YouTube僅在知悉特定侵權情事的情況下,才負擔移除或阻斷網路接取的義務;而當平台業者收到著作權侵害的通知後,便須立即阻斷涉嫌侵權的影片,並採取合理的措施,防止侵權行為再發生。然而,法院也強調,平台業者只負擔「合理」的檢查及管控義務,故平台業者毋須逐一檢視所有已上傳的影片。
按本案法院見解,所謂合理的措施,包括YouTube須利用其所研發的「內容識別系統Content-ID」,防止特定的侵權內容再次發生。另YouTube也負擔加裝文字過濾軟體的義務,以杜絕含有特定標題或關鍵字之影片上傳至平台。
據了解,雙方均發表聲明對此判決結果表示肯定。除原告得以主張其所享有的著作權外,YouTube也認為法院明確界定影視平台業者應作為的義務範圍。但對原告GEMA來說,重點在如何透過訴訟程序對YouTube施壓,重啟授權金的談判。兩造後續對長久來授權金計算公式的歧異將如何達成共識,值得關注。
美國通用汽車公司(General Motors,下稱通用汽車)於2018年01月間向美國運輸部(United States Department of Transportation)遞出請求展示雪弗蘭(Chevrolet)第4代自動駕駛車(此款車種無裝備方向盤與踏板,號稱世界上第一輛可以自我安全駕駛,且無需人類介入駕駛的車輛)的申請,不久後關於以下車禍事件的訴訟即遭提起。 根據Oscar Willhelm Nilsson(即原告,下稱Nilsson)於2018年01月22日向美國舊金山區地方法院針對前開車禍事件提起訴訟的主張,於2017年12月07日早上,其在加州舊金山Oak Street的中央車道上騎乘機車往東行駛,Manuel DeJesus Salazar(即被告,下稱Salazar)於同時地駕駛由通用汽車製造之Chevrolet Bolt vehicle(下稱自駕車),並開啟自動駕駛模式且雙手放開方向盤。Nilsson原騎乘於自駕車後方,不久,自駕車自Nilsson正前方變換車道至左側,Nilsson則繼續筆直前行,但自駕車又隨即往回駛入Nilsson直行騎乘的車道,因此撞擊Nilsson摔倒在地。據此,Nilsson主張通用汽車公司欠缺對於自駕車的自我操作應符合交通法規及規定所賦之注意義務,換言之,自駕車前揭操作車輛駕駛的行為(未注意其他正在行駛的駕駛人而轉換至比鄰車道)具有過失,造成Nilsson受到嚴重的生理及心理損害,且無法工作,產生高額的醫療、護理費用,故請求法院判決原告即Nilsson之主張不少於7萬5千美元之損害賠償、懲罰性損害賠償、律師委任費用以及其他適當且公正之侵權損害賠償等有理由。 然而,根據先前加州車輛管理局所提之文件,通用汽車對Nilsson所描述之車禍經過提出了以下爭執,通用汽車表示自駕車側面有一條長磨損痕跡,應是當時右邊的車道正要匯入中央車道,而自駕車正在自我校正回車道中央,Nilsson卻騎乘機車從兩個車道中間切出來,導致與自駕車發生擦撞。此外,案發當時自駕車的時速為了順應車流而保持在每小時12英里(每小時19公里)行進,而摩托車卻是以大概每小時17英里(每小時27公里)行進,故自駕車應無不當駕駛之情形,反應由機車騎士Nilsson負擔肇事責任,因其未在確認安全之情況下,即從自駕車右側超車,以上通用汽車反駁Nilsson主張的結論,更與舊金山警察局的報告結果不謀而合,即舊金山警察局認為Nilsson在確定安全以前,就嘗試要超越自駕車。 此外,在前開訴訟提起前的2018年01月14日至01月20日的當週,加州車輛管理局表列出自2014年至2018年間的54起自動駕駛車意外報告,大部分的狀況係由駕駛人(而非自動駕駛車本身)對事故負責(雖開啟自動駕駛模式,但駕駛人仍在特定條件下需要自行駕駛)。 即便前開各個報告看似不利Nilsson,但Nilsson的律師Sergei Lemberg卻表示警方的報告應是有利Nilsson,因自駕車早在車禍發生前就已經發覺Nilsson,但卻沒有預留足夠的時間剎車與閃避,因此通用汽車公司所稱之主張並不足採信,更可見自駕車的行為是危險且難以被預測的。 就此,一位南加大研究自駕車法律問題的法律系教授Bryant Walker Smith表示,未來發生事故的時候,駕駛人在大多數的狀況下比較不會被苛責,但自動駕駛系統會被檢討應該可以做得更完善。 (註:本件訴訟仍在繫屬中,尚未判決。)
台灣每人二氧化碳排放量逐年增加 全球第二十二名台灣自一九九○年至二○○四年止,平均每人排放量自五‧五七公噸大幅增加至十一‧五九公噸,以國際能源總署 (IEA )截至2002年統計,全球排放量前三名為美國、中國及俄羅斯,台灣則排名全球第22名。 主計處表示,依 IEA 統計資料庫顯示,二○○二年全球二氧化碳排放量前六名為美國(57.1億噸,占全球23.3﹪)、中國(34.7億噸,占14.2﹪)、俄羅斯(15.2億噸,占6.2 ﹪)、日本(11.8億噸,占4.8 ﹪)、印度(10.5億噸,占4.3﹪)及德國(8.5億噸,占3.5 ﹪)。台灣則排第 22 名(1990年為第28名),排放量占全球總量約1﹪,而經濟發展程度與我國相近的南韓、新加坡排名分別為第9名(4.7億噸,占1.9﹪)及52名(5500萬噸,占0.2﹪)。 行政院主計處據工研院能源與資源研究所統計,公佈最新「我國燃料燃燒排放二氧化碳」概況,台灣溫室氣體排放以二氧化碳為最大宗,佔八成以上,至二○○四年為 2.6億噸。 主計處指出,為抑制人為溫室氣體排放導致全球氣候變遷加劇現象,聯合國在一九九二年通過「聯合國氣候變化綱要公約」,且為落實排放管制工作,具有約束效力的「京都議定書」,已在今年二月十六日正式生效,期使在二○○八至二○一二年間,六種溫室氣體排放量平均應削減至比一九九○年低五‧二 %水準。在全球持續增溫、海平面上升及氣候變遷加劇下,台灣雖非京都議定書締約國,但政府相關部會順應國際永續發展潮流,正積極落實檢討溫室氣體排放減量政策。
瑞士洛桑管理學院發布2020智慧城市指數報告瑞士洛桑管理學院(International Institute for Management Development, IMD)於2020年9月18日發布2020智慧城市指數報告(Smart City Index 2020)。該報告為IMD和新加坡科技設計大學(Singapore University of Technology and Design, SUTD)共同出版,該報告評比109個城市,前5名智慧城市分別為:新加坡、赫爾辛基(芬蘭)、蘇黎世(瑞士)、奧克蘭(紐西蘭)、奧斯陸(挪威)。其他重要城市排名包括紐約第10、倫敦第15、香港第32、首爾第47、巴黎第61、東京第79、上海第81名等。 報告中智慧城市五大評比關鍵標準分別為:健康與安全(health and safety)、運輸及交通(mobility)、城市活動(activities)、機會(opportunities)和政府治理(governance)。每個標準又可區分為「結構面」(Structures)和「科技面」(Technologies)各20個細項評比,前者包含如城市基礎衛生、空氣汙染、醫療設備充足程度、交通擁塞度、綠地空間、文化活動、就業率以及居民和政府機關的互動度等;而後者則包含免費公共WIFI普及度、電子設施使用便利度(例如以空氣汙染偵測、安排醫療活動、文化活動線上購票和共享乘車以減少交通擁塞等)、大眾運輸動態資訊及其他電子化服務等。 今年評比的重點之一,在於城市「科技面」指標如何因應COVID-19此種大型傳染病。智慧城市的發展對傳染病有重要防禦作用,排名較前段的城市相對能以科技應對災難型傳染病。此外,報告中認為若政府可以行使更多公權力,將可以藉由管理科技為城市居民帶來更多便利生活。從報告整體排名變化中看出「低度發展」城市比先進城市更容易取得大幅度進步,以及世界各國發展「第二城市」的趨勢,例如西班牙畢爾包的排名(24名)較馬德里(45名)佳,英國伯明翰今(2020)年排名較2019年進步12名,而倫敦僅進步5名次。 我國臺北市綜合評比排名第8,在亞太地區高居第2,僅次於新加坡。其中評比標準中,分數較高有免費公共WIFI普及度、醫療服務設備充足、用3C設備預約就診或其他醫療行為的容易度、文化活動線上購票方便度;分數較低的有交通壅塞問題、綠地不足以及政府腐敗與效率不彰等。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。