德國法院針對GEMA控告YouTube判決出爐

  德國漢堡地方法院4月20日針對GEMA控告YouTube一案作出判決(Az. 310 O 461/10),確認影片平台業者著作權法上之義務,預料將為兩造授權金協議過程的僵局,造成一定影響。

  本案原告GEMA主張被告YouTube應採取措施,阻止其享有權利之12個影音檔案,繼續透過YouTube平台在德國境內流通。而本案的爭點即在於:對於YouTube平台上由網友上傳、且涉嫌侵害著作權的影片內容,被告移除及防止侵害的責任範圍究竟多大。

  本案法院認為,因被告本身並非將違法內容上傳之行為人,無法以德國電信服務法(TMG)第7條規定,課予其侵權行為人責任(Täterhaftung)。但被告因提供、經營平台,對著作權侵害有所「貢獻」,故法院依TMG第10條規定,認定被告YouTube僅在知悉特定侵權情事的情況下,才負擔移除或阻斷網路接取的義務;而當平台業者收到著作權侵害的通知後,便須立即阻斷涉嫌侵權的影片,並採取合理的措施,防止侵權行為再發生。然而,法院也強調,平台業者只負擔「合理」的檢查及管控義務,故平台業者毋須逐一檢視所有已上傳的影片。

  按本案法院見解,所謂合理的措施,包括YouTube須利用其所研發的「內容識別系統Content-ID」,防止特定的侵權內容再次發生。另YouTube也負擔加裝文字過濾軟體的義務,以杜絕含有特定標題或關鍵字之影片上傳至平台。

  據了解,雙方均發表聲明對此判決結果表示肯定。除原告得以主張其所享有的著作權外,YouTube也認為法院明確界定影視平台業者應作為的義務範圍。但對原告GEMA來說,重點在如何透過訴訟程序對YouTube施壓,重啟授權金的談判。兩造後續對長久來授權金計算公式的歧異將如何達成共識,值得關注。

相關連結
※ 德國法院針對GEMA控告YouTube判決出爐, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5749&no=55&tp=1 (最後瀏覽日:2025/11/29)
引註此篇文章
你可能還會想看
加州立法機關提出社群媒體青少年成癮法草案,促進兒童身心福祉

社群媒體是溝通資訊之重要工具。但部分社群媒體向用戶投放易使人成癮的資訊,對兒童和青少年福祉形成重大風險。據此緣由,美國加州立法機關於2024年1月29日提出社群媒體青少年成癮法草案(Social Media Youth Addiction Law),規定社群媒體除非能合理確定用戶非未成年人,或取得未成年用戶家長同意,否則不得向用戶提供易使人成癮的資訊。 該草案將網路或應用程式中,依用戶特徵或習慣,優先顯示的多片段資訊,定義為易使人成癮的資訊(addictive feed)。除非該資訊符合以下例外條件: (1) 用戶用以搜尋資訊的關鍵字不會被使用的設備記憶,且該資訊與用戶過去的社群媒體使用行為無關。 (2) 是因用戶隱私設定、設備規格、未成年人限制而呈現的資訊。 (3) 是因用戶明確要求而提供,且不易使人成癮的資訊。 (4) 是用戶間直接且非公開之通訊組成的資訊。 (5) 是同一資訊來源,且在音檔或影片形式下,不會自動連續播放的資訊。 該草案亦規定投放易使人成癮資訊的社群媒體,不得在深夜至凌晨時段、上學至放學時段,以及開學期間的週一到週五,向未成年用戶發送通知,除非已取得未成年用戶家長同意。 最後,該草案規定投放易使人成癮資訊的社群媒體每年向公眾揭露未成年用戶總數量、家長同意接收易成癮資訊的未成年用戶數量等資訊。該規定有利大眾監督社群媒體對法規之遵循情況,並促進社會對兒童、青少年身心健康的關心。

國際再生能源總署針對各國實施「綠氫憑證」提出建議報告

  國際再生能源總署於(International Renewable Energy Agency, IRENA)2022年3月13日發布「能源終端使用部門:綠氫憑證」(Decarbonising End-use Sectors: Green Hydrogen Certification)研究報告,說明綠氫的部屬與使用,以及國家、區域與國際綠氫市場的發展將取決於追蹤制度的建立與接受程度。   太陽能或風電等再生能源將水電解為氫氣與氧氣後,可轉換為氫能,且因產氫過程不排碳,故此類氫能稱為綠氫。為降低溫室氣體排放、解決溫室效應與極端氣候等問題,綠氫與來自綠氫的合成燃料,在追求減少碳排放的能源轉型中扮演關鍵地位。   該報告概述了綠氫憑證制度的技術考量以及創建此類工具所需面臨的挑戰,並對政策決策者提出關鍵建議,旨在建立具備國際認證標準的綠氫追蹤制度——綠氫憑證。   綠氫憑證是指生產設備業者、貿易商及供應商等能源市場參與者,向國際再生能源憑證相關組織或當地政府登記取得其生產過程中所使用的能源來自於綠氫之證明。消費者可以透過該憑證識別綠氫的來源,並可行使相關權利。   為確保綠氫憑證及其追蹤制度達成綠氫行業既定脫碳目標,該報告提出十點建議:(1)明確「綠氫」之定義;(2)建立標準,確保綠氫電力生產來源安全可靠;(3)確保憑證能為消費者及決策者提供足夠資訊;(4)簡化行政程序,減少行政負擔;(5)實施具備成本效益的憑證追蹤制度;(6)建立適當的控制機制避免濫用或缺乏透明度;(7)應考量結合既有制度;(8)避免跨國交易時重複頒發不同國家之憑證(9)利用綠色金融標準鼓勵遵守憑證要求;(10)促進國際合作,建立全球共通之標準與規則。

加拿大聯邦上訴法院判決無實體酒店仍得就酒店服務註冊商標

  加拿大聯邦上訴法院於Miller Thomson LLP v. Hilton Worldwide Holding LLP案指出,儘管企業在加拿大未設立實體店面,但如在加拿大有提供與該實體店相關聯的服務,仍可就其服務使用該企業之商標。   該案背景為希爾頓集團(Hilton Worldwide Holding)在加拿大未有華爾道夫酒店(Waldorf Astoria)的實體店,卻將WALDORF ASTORIA(下稱系爭商標)於加拿大註冊用於「酒店服務」。對造Miller Thomson欲在加拿大註冊「WALDORF」、「THE WALDORF」、「WALDORF HOTEL」等類此名稱的商標,遭希爾頓集團反對。Miller Thomson為此主張商標註冊官應命希爾頓集團依商標法第45條規定,提出有在加拿大使用系爭商標的證明。希爾頓集團指出,系爭商標有使用於全球預訂、付款服務,且加拿大客戶為忠誠會員亦有獎勵積分等。然而,商標註冊官以先前Motel 6 Inc. v. No. 6 Motel Ltd. [1982] 1 FC 638 (FCTD) (“Motel 6”)判決,與加拿大商標異議委員會(Trademarks Opposition Board,TMOB)Stikeman Elliott LLP v. Millennium & Copthorne International Ltd., 2015 TMOB 231 (“M Hotel”) and Maillis v Mirage Resorts Inc, 2012 TMOB 220等案,認為須由實際位於加拿大的酒店,始能提供酒店服務,遂撤銷系爭商標的註冊。   經希爾頓集團提起訴訟後,聯邦上訴法院認為商標法未有「服務」的定義,因此有無使用商標,認定方式應符合現代的商業慣例。聯邦上訴法院指出,無論企業提供的是主要服務、附帶服務或輔助服務,只要消費者從中獲得實質利益,即代表企業已實現其服務。準此,華爾道夫酒店在加拿大雖僅有預訂、付款服務,屬於附帶或輔助服務,但若消費者有因系爭商標的原因,而願意在加拿大利用華爾道夫酒店提供的附帶或輔助服務,並從中獲得利益,則可認定系爭商標有在加拿大被使用。   該判決的重要性在於確立即便在加拿大無實體存在,商標權人仍可將商標與其服務結合,但聯邦上訴法院提醒,僅在加拿大境外在網站上顯示商標,尚不足證明該商標有使用於所註冊的服務。此外,商標若結合於網路服務使用,則商標人與加拿大消費者間須有足夠程度的互動,因此,商標權人為了持續受商標法的保護,有必要詳細記錄業經註冊商標的使用情況,俾利在發生爭議時,有證據資料得以佐證。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP