美國白宮發布國家生物經濟藍圖

  美國白宮終於2012年4月26日正式發布「國家生物經濟藍圖」(National Bioeconomy Blueprint),宣告未來美國將以生物技術為首的投資、研究與商業經濟活動列為優先支持的對象。近年來美國苦思於如何在國內經濟成長疲軟與失業問題上尋求解套,而有鑒於全球「生物經濟」(Bioeconomy)的快速崛起,歐巴馬政府遂寄望於生物經濟,期望藉由支持生物技術的研究創新與商業活動,帶動國內投資、提升就業率及經濟成長,並仰賴生物科技的發展增進國民福址。因此,白宮科學與技術政策辦公室(The White House's Office of Science and Technology Policy, OSTP)便於2011年10月起開始向生物醫藥、生物科技相關產業及研究機構徵集意見,歷經半年的規劃,始產出此部發展藍圖。

  國家生物經濟藍圖首先劃定生物經濟的五大趨勢,包括:健康、能源、農業、環境及知識技術的分享。其次揭示了未來美國生物經濟的五大發展策略目標及其具體作法: (一)支持各項研發投資以建立生物經濟的發展基礎:

(1)強化生物技術的各類研究發展,如生物醫藥、生質能源、生物綠建築、生物農業等
(2)實施新的補助機制以使得生物經濟投資達最大化,例如國家科學基金會於2012年推動的CERATIV(Creative Research Awards for Transformative Interdisciplinary Ventures)獎補助計畫。
(二)促進生物技術發明的市場應用與商業化:
(1)加強生物醫藥的轉譯及管制科學(translational and regulatory science)發展;
(2)由國家衛生研究院(National Institutes of Health,NIH)及食品藥物管理局(Food and Drug Administration,FDA)等相關主管機關主動檢視、調整既有法規,以加速生物技術成果的商業化(如生物醫藥的上市)。
(三)改革並發展相關規範,以減少法規障礙、增加規範程序的效率與可預測性:
(1)減少可能影響生醫產業發展的法規障礙;
(2)對於低風險的醫療裝置,降低其遵循法規的成本負擔;
(3)由食品藥物管理局等相關主管機關,對於醫藥產品採行雙向規範審查(Parallel Regulatory Review),以減少產品上市時間。
(四)更新相關國家人才培訓計畫,並調整學術機構對學生訓練的獎勵機制,以符合國家與產業發展的勞動需求。
(五)支持公私夥伴及競爭前合作(Precompetitive Collaborations)關係的發展:由國家衛生研究院及食品藥物管理局等相關主管機關鼓勵、支持公私或私人部門間形成夥伴關係,共同針對生物醫藥及食品安全進行創新研究發展。

  由「國家生物經濟藍圖」對美國未來生物經濟發展的策略及具體做法看來,其內容相當廣泛,從促進各種生物技術的研發投資、生技成果商業化運用、產品上市管制鬆綁、科技人員培育,再到公私部門合作的增進,完整涵蓋了整個生物技術產業發展的各個必要環節,雖已點出生物技術產業發展有待突破之處,但對於其具體法規與配套機制,仍有待日後一一落實。因此,未來本藍圖將如何形塑美國各領域生物技術產業的輪廓,並影響法規與促進機制之細節,值得持續觀察之。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國白宮發布國家生物經濟藍圖, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5756&no=55&tp=1 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
德國Brüstle vs. Greenpeace案於歐盟再掀人類胚胎幹細胞研究爭議

  歐盟1998年生物科技發明法律保護指令(Directive on the legal protection of biotechnological inventions,98/44/EC)第6條(2)(c)雖規定「將人類胚胎作產業或商業用途之使用不具備可專利性」,但並未定義何謂「人類胚胎」及「產業或商業用途使用」,因此德國聯邦最高法院於2009年審理Brüstle vs. Greenpeace一案時,遂提請歐盟法院就前述問題為初步裁定。   在歐盟法院提出初步裁決前,佐審官(Advocate General)M. Yves Bot已先於2011年3月10日提出其法律意見書,認定人類胚胎的概念包括從受精、發展為起始性全能幹細胞(initial totipotent cells)到形成完整人體的整個階段,凡已具備發展為完整人體的基本特質與能力者,均符合指令第6條(2)(c)所稱之胚胎,而不具有可專利性;此外,任何涉及毀損人類胚胎或以人類胚胎為基礎材料的技術亦違反公共秩序與道德,而不得授予專利。至於「產業或商業用途」,其認為係指任何基於產業或商業目的大量製造及使用人類胚胎之行為。   歐盟法院將於近日作出初步裁決,由於佐審官之意見向來對於裁決結果具有實質影響力,故該意見書已引發各界高度關注與討論;雖然德國聯邦最高法院未必會依循裁決結果進行判決,但該裁決內容已涉及人類胚胎幹細胞研究的核心-胚胎定義與研究成果的可專利性問題,因此未來將對各國幹細胞研究的立法政策走向造成何種影響,值得密切觀察。

WIPO發表新冠肺炎防疫政策資訊追蹤平台,指出部分會員國已採取強制授權

  世界智慧財產組織(World Intellectual Property Organization, WIPO)於2020年5月5日發表WIPO新冠肺炎防疫政策資訊追蹤平台(WIPO COVID-19 IP Policy Tracker),方便民眾追蹤新冠肺炎期間,各國的智慧財產權應對措施變化。WIPO全球專利資料庫PATENTSCOPE也推出新檢索功能,以便對已公開的專利文獻進行定位和檢索,這些資訊對創新者研發對抗COVID-19疫情的新技術有所幫助。作為領導並推廣智慧財產權的國際組織,WIPO推出的新冠肺炎防疫政策資訊追蹤平台是一個資料庫,目標是讓利害關係人了解新冠肺炎期間各國相應的智慧財產權政策調整。各個主管機關推出的政策包含延長或寬限繳費期限、採取特殊措施,如強制授權(Compulsory Licenses)。   WIPO新冠肺炎防疫政策資訊追蹤平台有一個「自主行動專區」,指出不少機構、企業、和私部門中的智慧財產權所有權人,採取大量自主行動措施,用以緩解危機。其中包含著作權、專利等。值得一提的是由史丹佛Mark Lemley教授領銜主導的Open COVID Pledge,此計畫委員會由許多科學家、律師、企業家組成,號召產學研各領域透過開放智慧財產權,作為防疫之用。初始加入Open COVID Pledge的產業界夥伴包含Facebook、Amazon、Intel、IBM、Microsoft等科技巨頭,UBER、AT&T等亦從善如流。其中,連續27年蟬聯美國專利榜榜首的IBM,在2023年12月31日前免費提供80,000項專利。微軟則是透過技術和創新來追蹤疾病並開發解決方案,如:AI for Health、Bing COVID-19 Tracker。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

簡析美國閒置頻譜利用之法制發展

TOP