追蹤、定位、起訴,所有 P2P(BT) 軟體使用者的噩夢再次上演。全美製片業團體「美國電影協會」 ( Motion Picture Association of America ; MPAA ) 在 8 月 25 日對美國境內 286 位居民提起訴訟,成為首宗利用 P2P(BT) 網站伺服器記錄 ( server logs ) 追蹤 ( track down ) 盜版電影下載者的案例。
今年 2 月,著名 BT 網站 LokiTorrent 與 MPAA 的大戰告一段落。德州法院下令 LokiTorrent 關閉網站外,並命令 LokiTorrent 將伺服器記錄轉交給 MPAA 的調查員 ( investigator ) 。 MPAA 的發言人聲稱本月 25 日的訴訟與此事件無關,但所有人都明白 MPAA 正是憑此線索,最終找到了 P2P(BT) 用戶的行蹤。好萊塢希望藉此行動阻嚇免費下載電影的行?, MPAA 資深副總裁 John Malcom 聲稱「下載盜版電影的人要當心了,當你為著作權侵害行為時,網路上並不會有朋友站出來替你撐腰。」
儘管 P2P(BT) 軟體背負著助長盜版的惡名,但 P2P(BT) 的合法用途也在逐漸增加,例如使用 P2P(BT) 技術分發 ( distribute ) 開放原始碼軟體 ( open-source software ) ,網路瀏覽器軟體公司 Opera 即在新版的程式中內建了此種技術。 BT 技術的發明人 Bram Cohen 曾警告用戶,使用 P2P(BT) 軟體下載盜版是個蠢主意,因?軟體在設計時並未刻意隱藏用戶的識別資訊,這也是為何 MPAA 此次能憑藉著伺服器記錄對用戶提起訴訟的主要原因。
法國國民議會(National Assembly)於2019年7月9日通過反仇恨言論立法提案,希望效仿德國社群媒體管理法(NetzDG),課予網路平台業者積極管理平台上仇恨言論(hate speech online)之責任。該提案希望透過立法要求大型網路平台及搜尋引擎,如Facebook及YouTube等,必須設置用戶檢舉管道,並於24小時內刪除以種族、宗教、性別、性取向或身心障礙為由之煽動仇恨或歧視性侮辱言論,否則將面臨高達全球營業額4%之罰款。 在主管機關方面,規劃由法國廣電主管機關「最高視聽委員會」(High Audiovisual Council, CSA)進行監管,網路平台業者必須向其提交仇恨言論之處理報告與相關數據。同時,平台業者應加強與法國司法系統的合作,取消違法用戶的匿名權利並提供相關證據資料,以利司法追訴。 2019年3月15日紐西蘭清真寺槍擊案之網路直播事件,讓各國警惕勿讓網路平台成為傳遞仇恨言論的工具。發起立法的法國議員Laetitia Avia表示,對抗網絡仇恨言論是場艱巨且長期的戰鬥,希望透過立法讓各方負起應有的責任,讓仇恨言論無所遁形,但反對者認為平台業者為了避免裁罰的風險,可能會對內容進行過度審查,相關自動化過濾技術也可能對言論自由產生不利影響。本立法提案仍待法國參議院完成審議。
預付型商品之規範-以日本法為借鏡 美國維吉尼亞州消費者資料保護法2021年3月2日美國維吉尼亞州州長簽署了維吉尼亞州消費者資料保護法(Virginia Consumer Data Protection Act),是繼加州之後,第二個自行制定相關規範並且採用的州,預計在2023年1月正式生效。 該法在主軸上與加州消費者隱私保護法相去不遠,其為消費者提供六項主要權利,包括近用權、刪除權、資料可攜權、選擇退出權、更正權,以及申訴在合理期間內未獲妥適處理之再申訴權;又或者在義務上要求企業進行資料的蒐集、處理或利用時,需經當事人同意並且符合合理利用與必要範圍之限制,亦要求企業建立技術保障管理機制,以及向消費者提供隱私權政策。 該法與加州消費者隱私保護法也有些許不同之處,例如,該法並無賦予人民為一切訴訟行為之權,訴訟權掌握在檢察總長手中、該法案適用主體必須是控制或處理十萬筆以上消費者個人資料之企業,或是總收入50%來自於利用消費者個人資料,且該資料量總數達二萬五千筆以上之企業,相比加州消費者隱私保護法適用主體之資格更為寬鬆。無論就形式上或實質上而言,維吉尼亞州消費者資料保護法普遍被認為比加州消費者隱私保護法更加友善企業,並且廣泛得到亞馬遜等相關科技行業的支持。 在數位科技發展下,美國的紐澤西州、猶他州,以及許多其他州政府,紛紛考慮進行相類似之資訊隱私保護立法,此一趨勢發展已然勢不可擋。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。