追蹤、定位、起訴,所有 P2P(BT) 軟體使用者的噩夢再次上演。全美製片業團體「美國電影協會」 ( Motion Picture Association of America ; MPAA ) 在 8 月 25 日對美國境內 286 位居民提起訴訟,成為首宗利用 P2P(BT) 網站伺服器記錄 ( server logs ) 追蹤 ( track down ) 盜版電影下載者的案例。
今年 2 月,著名 BT 網站 LokiTorrent 與 MPAA 的大戰告一段落。德州法院下令 LokiTorrent 關閉網站外,並命令 LokiTorrent 將伺服器記錄轉交給 MPAA 的調查員 ( investigator ) 。 MPAA 的發言人聲稱本月 25 日的訴訟與此事件無關,但所有人都明白 MPAA 正是憑此線索,最終找到了 P2P(BT) 用戶的行蹤。好萊塢希望藉此行動阻嚇免費下載電影的行?, MPAA 資深副總裁 John Malcom 聲稱「下載盜版電影的人要當心了,當你為著作權侵害行為時,網路上並不會有朋友站出來替你撐腰。」
儘管 P2P(BT) 軟體背負著助長盜版的惡名,但 P2P(BT) 的合法用途也在逐漸增加,例如使用 P2P(BT) 技術分發 ( distribute ) 開放原始碼軟體 ( open-source software ) ,網路瀏覽器軟體公司 Opera 即在新版的程式中內建了此種技術。 BT 技術的發明人 Bram Cohen 曾警告用戶,使用 P2P(BT) 軟體下載盜版是個蠢主意,因?軟體在設計時並未刻意隱藏用戶的識別資訊,這也是為何 MPAA 此次能憑藉著伺服器記錄對用戶提起訴訟的主要原因。
高科技企業申請促產條例相關租稅減免浮濫,尤其是在可享高額抵減的研發項目上,爭議最多。實務上,人才培育的投資抵減減稅空間較少,頂多幾十萬元或幾百萬元,但研發投資抵減最高可達幾十億元,因此常見的爭議也最多。由於研發費用可提列為費用、又可抵稅,對企業來說效益很高,因此很多公司都先申報為研發費用,等被國稅局查到再說;另將製造、銷售費用列為研發費用的情形不勝枚舉。 依照公司研究與發展及人才培訓支出適用投資抵減辦法審查要點第1點附表,研發支出只有包括全職研發人員薪資等九種支出才能抵減,而且業者須附薪資表及證明文件證明,才能減稅。但因為研發誘因優渥,企業總是先報再說,因此行政法院投資抵減的相關訴訟,十之八九都是國稅局勝訴。根據公司研究與發展及人才培訓支出適用投資抵減辦法第5條規定,公司的研發支出,在同一課稅年度內得按百分之三十抵減當年度應納營所稅額;支出總金額超過前二年度研發經費平均數者,超過部份得按百分之五十抵減當年度應納營所稅,當年度營所稅額不足抵減者,得在以後四年度營所稅額抵減。 國稅局提醒,申請研發減免企業必須提供研究計畫等證明,否則舉證不足反將被國稅局要求補稅,恐衝擊公司當年獲利。一般來說,適用投抵減稅金額愈高的公司,也愈常被選案查核,確保公司沒有僥倖逃稅心理。如果投抵項目涉及大陸地區,像是人才培訓支出,則應依臺灣地區與大陸地區人民關係條例第24、25、25條之1條等法令規定,經主管機關核准,否則也將遭國稅局剔除補稅。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
iWatch於各國申請註冊商標的布局與阻礙雖然美國蘋果公司傳聞中之智慧型手錶-iWatch,由於產品設計上仍有許多問題待解決,故迄今仍只聞樓梯響。但為使「iWatch」受到妥善的保護,蘋果公司已積極在日本、墨西哥、俄羅斯、臺灣、土耳其等地申請「iWatch」商標,且可預期蘋果公司未來仍將持續在全球各地進行申請。 然而,為取得「iWatch」之商標,蘋果公司在各國均可能遭遇困難;如美國加州的OMG Electronics公司即主張其擁有「iWatch」商標,且其商品或服務同樣與智慧型手錶裝置有關;在英國及歐盟則有一間網路服務公司Probendi係從2008年即擁有「iWatch」商標,惟其係註冊用於一款可將智慧型手機內的音樂、影片及地點資訊傳送至該公司管理用軟體的app軟體上;此外,在中國則至少有九間公司主張其擁有iWatch之商標,雖則其中僅有三間公司所有商標係註冊用於「電子產品、手錶週邊」,且現均已屬無效。但近似的商標「iWatching」仍可能阻撓「iWatch」在陸申請註冊商標。 蘋果公司曾在中國以6000萬美元天價與唯冠科技就「iPad」商標使用權達成和解,如果申請「iWatch」商標受阻,或業有其他公司搶註「iWatch」,可能類於「iPad」之戲碼將再度上演。 智慧型手錶裝置可能成為智慧型手機之後,下一波市場競爭的焦點,除了蘋果公司即將推出的iWatch外,Microsoft、Google、Samsung、Dell都將發展智慧型手錶裝置,以追趕Sony之腳步。
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。