世界智慧財產權組織(WIPO)於2022年11月21日發布了《2022年世界智慧財產權指標(World Intellectual Property Indicator, WIPI)》。WIPO以全球150個國家智慧財產主管機關的統計資料、產業的市場調查資料作為分析標的,針對全球專利權(含新型專利)、商標權、工業設計、植物品種權、地理標示、創意經濟(出版業)的整體發展狀況進行調查。 根據2022年的分析結果顯示,與過往經濟衰退期間的歷史經驗不同,在COVID-19疫情期間,2021年全球智慧財產權的申請數量持續增加。如: 1、「專利」的申請量增加了3.6%。 2、「商標」的申請量(含指定類別)增加了5.5%。 3、「工業設計」的申請量增加了9.2%。 4、「植物品種」的申請量增加了12%。 以商標為例,2021年全球共提交了約1390萬件商標申請,申請量從金融海嘯後(2009年)至今連續12年成長。其中,亞洲商標主管機關受理的商標申請量占全球的69.7%,較2011年時的44.7%有顯著成長;受理商標申請的前五名國家分別為: 1、中國國家知識產權局(CNIPA):約950萬件。 2、美國專利商標局(USPTO):約90萬件。 3、歐盟智慧財產局(EUIPO):約50萬件。 4、印度專利、設計及商標管理局(CGPDTM):約49萬件。 5、英國智慧財產局(UK IPO):約45萬件。 此外,指標針對「非母國申請案(Non-resident trademark applications)」的產業別進行分析,分析結果顯示2021年各國商標申請人至外國市場尋求商標保護的前十大產業分別為: 1、研究與技術:20% 2、健康醫事:13.8% 3、服裝配件:12.8% 4、休閒教育:10.5% 5、居家設備:9.7% 6、農業產品與服務:9.6% 7、商業金融:9.5% 8、運輸機械:6% 9、營建:5.2% 10、化學:2.8% 再者,指標中分析上述產業在各國商標申請案件中的占比,可作為我國企業全球布局的參考: 1、研究和技術產業:歐盟21.3%、英國20.4%、日本18.7%、美國17.7%。 2、農業產品與服務產業:中國25.2%、韓國18.4%、俄羅斯14.2%、印度15.1%、土耳其14.8%。 3、健康醫事產業:印度23.1%、日本13.9%、中國11.3%; 4、商業金融產業:巴西26.3%、土耳其23.3%。 WIPO從2009年至今每年發布《世界智慧財產權指標》給各國政府參考,期待各國政府持續建構更完善的智慧財產制度,協助個人、企業保護其創新,以促進全球經濟的發展。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟資料保護工作小組修正通過個人資料侵害通報指引歐盟資料保護工作小組修正通過「個人資料侵害通報指引」 資訊工業策進會科技法律研究所 法律研究員 李哲明 2018年3月31日 壹、事件摘要 因應歐盟「通用資料保護規則」(The General Data Protection Regulation,或有譯為一般資料保護規則,下簡稱GDPR)執法即將上路,針對個人資料侵害之通報義務,歐盟資料保護工作小組(Article 29 Data Protection Working Party, WP29)特於本(2018)年2月6日修正通過「個人資料侵害通報指引」(Guidelines on Personal data breach notification under Regulation 2016/679),其中就GDPR所規範個資侵害之定義、對監管機關之通報、與個資當事人之溝通、風險及高風險評估、當責與紀錄保存及其他法律文件所規定之通報義務等,均設有詳盡說明與事例。 貳、重點說明 一、何謂個資侵害?個資侵害區分為哪些種類? 依據GDPR第4條(12)之定義,個資侵害係指:「個人資料因安全性之侵害所導致意外或非法之毀損、喪失、修改、未經授權之揭露、存取、個資傳輸、儲存或其他處理。」舉例來說,個人資料之喪失包括含有控制者(controller)顧客資料庫的備份設備之遺失或遭竊取。另一例子則為整份個資的唯一檔案遭勒索軟體加密,或經控制者加密,但其金鑰已滅失。依據資訊安全三原則,個資侵害之種類區分為: 機密性侵害(Confidentiality breach):未經授權、意外揭露或獲取個人資料。 完整性侵害(Integrity breach):未經授權或意外竄改個人資料。 可用性侵害(Availability breach):在意外或未經授權之情況下,遺失個人資料存取權限或資料遭銷燬。 二、何時應為通知? 按GDPR第33條(1)之規定,當個資侵害發生時,在如果可行之情況下,控制者應即時(不得無故拖延)於知悉侵害時起72小時內,依第55條之規定,將個資侵害情事通報監管機關。但個資侵害不會對自然人之權利和自由造成風險者,不在此限。倘未能於72小時內通報監管機關者,應敘明遲延之事由。 三、控制者「知悉」時點之判斷標準為何? 歐盟資料保護工作小組認為,當控制者對發生導致個人資料侵害的安全事件達「合理確信的程度」(reasonable degree of certainty)時,即應視為其已知悉。以具體事例而言,下列情況均屬所謂「知悉」: 在未加密個人資料的情況下遺失USB密鑰(USB Key),通常無法確定是否有未經授權者將獲致存取資料權限。即使控制者可能無法確定是否發生機密性侵害情事,惟仍應為通知,因發生可用性侵害之情事,且已達合理確信的程度。 故應以控制者意識到該密鑰遺失時起為其「知悉」時點。 第三人通知控制者其意外地收到控制者的客戶個人資料,並提供該揭露係未經授權之證據。當侵害保密性之明確證據提交控制者時,即為其「知悉」時點。如:誤寄之電子郵件,經非原定收件人通知寄件者之情形。 當控制者檢測到其網路恐遭入侵,並針對其系統進行檢測以確認個人資料是否遭洩漏,嗣後復經證實情況屬實,此際即屬「知悉」。 網路犯罪者在駭入系統後,聯繫控制者以索要贖金。在這種情況下,控制者經檢測系統並確認受攻擊後,亦屬「知悉」。 值得注意的是,在經個人、媒體組織、其他來源或控制者自我檢測後,控制者或將進行短暫調查,以確定是否發生侵害之事實。於此調查期間內所發現之最新侵害情況,控制者將不會被視為「知悉」。然而,控制者應儘速展開初步調查,以形成是否發生侵害事故之合理確信,隨後可另進行更詳盡之調查。 四、共同(聯合)控制者之義務及其責任分配原則 GDPR第26條針對共同控制者及其如何確定各自之法遵義務,設有相關規定,包括決定由哪一方負責遵循第33條(對主管機關通報)與第34條(對當事人通知)之義務。歐盟資料保護工作小組建議透過共同控制者間之契約協議,約明哪一方係居主要地位者,或須負責盡到個資侵害時,GDPR所定之通知義務,並載於契約條款中。 五、通報監管機關與提供資訊義務 當控制者通報監管機關個資侵害情事時,至少應包括下列事項 (GDPR第33條(3)參照): 敘述個人資料侵害之性質,包括但不限於所涉之相關個資當事人、個資紀錄及其類別、數量。 傳達資料保護長(DPO)或其他聯絡人之姓名與聯絡方式,俾利獲得進一步資訊。 說明個資侵害可能之後果。 描述控制者為解決個資侵害業已採取或擬採行之措施,在適當情況下,酌情採取措施以減輕可能產生之不利影響。 以上乃GDPR要求通報監管機關之最基本事項,在必要時,控制者仍應盡力提供其他細節。舉例而言,控制者如認為其處理者係個資侵害事件之根因(root cause),此時通報並指明對象即可警示委託同一處理者之其他控制者。 六、分階段通知 鑒於個資事故之性質不一,控制者通常需進一步調查始能確定全部相關事實,GDPR第33條(4)爰設有得分階段通知(notification in phases)之規定。凡於通報時,無法同時提供之資訊,得分階段提供之。但不得有不必要之遲延。同理,在首次通報後之後續調查中,如發現該事件業已受到控制且並未實際發生個資侵害情事,控制者可向監管機關為更新。 七、免通報事由 依據GDPR第33(1)條規定,個資侵害不會對自然人之權利和自由造成風險者,毋庸向監管機關通報。如:該遭洩露之個人資料業經公開使用,故並未對個人資料當事人構成可能的風險。 必須強調的是,在某些情形下,未為通報亦可能代表既有安全維護措施之缺乏或不足。此時監管機關將可能同時針對未為通報(監管機關)或通知(當事人),以及安全維護措施之缺乏或不足,以違反第33條或(及)34條與第32條等獨立義務規定為由,而依第83條4(a)之規定,併予裁罰。 參、事件評析 一、我國企業於歐盟設有分支機構或據點者,宜指派專人負責法遵事宜 揆諸GDPR前揭規定,當個資侵害發生時,控制者應即時且不得無故拖延於知悉時起72小時內,將個資侵害情事通報監管機關。未能履踐義務者,將面臨最高達該企業前一會計年度全球營業額之2%或1千萬歐元,取其較高者之裁罰。我國無論金融業、航運業、航空運輸業、電子製造業及進出口貿易業者等,均或有於歐盟成員國境內或歐洲經濟區(European Economic Area)當地設立子公司或營業據點。因此,在GDPR法遵衝擊的倒數時刻,指派具瞭解GDPR規定、當地個資隱私法遵規範、擅長與隱私執法機構溝通及充要語言能力者專責法遵業務實刻不容緩。蓋此舉可避免我國企業母公司鞭長莫及,未能及時處置而致罹法典之憾。 二、全面檢視個資業務流程,完備個資盤點與風險評鑑作業,掌握企業法遵現況 企業應全面檢視業務流程,先自重要核心業務中析出個資作業流,搭配全面個資盤點,並利用盤點結果進行風險評鑑,再針對其結果就不同等級之風險採行相對應之管控措施。此外,於全業務流程中,亦宜採行最小化蒐集原則,避免蒐集過多不必要之個人資料,尤其是GDPR所定義之敏感個資(如:種族、民族血統、政治觀點、宗教信仰、哲學信仰、工會會員資格等個人資料,及遺傳資料的處理,用於識別特定自然人之生物識別資料、健康資料、性生活、性取向等)或犯罪前科資料,俾降低個人資料蒐集、處理、利用、檔案保存及銷燬之全生命週期流程中的風險。此舉亦契合我國個人資料保護法第5條所揭櫫之原則。 三、立法要求一定規模以上之企業須通過個資隱私法遵第三方認(驗)證,並建置認證資訊公開平台 鑒於國際法遵衝擊以及隱私保護要求之標準線日漸提升,我國企業除自主導入、建置並維運相關個資保護與管理制度以資因應,更有賴政府透過法令(如:修正個人資料保護法)強制要求一定規模以上之企業通過第三方專業驗證,俾消弭風險於日常準備之中。蓋我國具一定規模以上企業,無論其係屬何種業別,一旦違反國際法遵要求,遭致鉅額裁罰,其影響結果將不僅止於單一企業,更將嚴重衝擊該產業乃至於國家整體經貿發展。職是,採法律強制要求企業定期接受獨立、公正及專業第三方認(驗)證,咸有其實益性與必要性。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
日本內閣府公布生成式AI初步意見彙整文件,提出風險因應、應用及開發兩大關注重點日本內閣府於2023年5月26日召開第2次「AI戰略會議」(AI戦略会議),並公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理)。鑒於AI對於改善國人生活品質、提高生產力無疑有相當助益,考量生成式AI甫問世,社會大眾對其潛在風險尚心存疑慮,內閣府遂以生成式AI為核心,延續先前已公布之「AI戰略2022」(AI 戦略 2022)、「以人為中心的AI社會原則」(人間中心の AI 社会原則),以「G7廣島峰會」(G7広島サミット)所提出之願景—「符合共同民主價值的值得信賴AI」為目標,提出「風險因應」及「應用與開發」兩大關注重點,供政府有關部門參考之同時,並期待可激起各界對於生成式AI相關議題之關注與討論: 一、風險因應:AI開發者、服務提供者與使用者應自行評估風險並確實遵守法規及相關指引;政府則應針對風險應對框架進行檢討,對於已知的風險,應先以現有的法律制度、指引與機制進行處理,假如現有法制等無法完全因應這些風險,則應參考各國作法盡速對現行制度進行修正。 AI的透明度與可信賴度於風險因應至關重要。若能掌握AI學習使用哪些資料、所學習資料之來源、AI如何產生結果等,就能針對使用目的選擇適合的AI,也較易因應發生之問題,並避免AI產生錯誤結果或在對話中洩漏機密資訊等。對此,本文件呼籲AI開發者及服務提供者依據現行法令和指引主動揭露資訊,政府則應對透明度和可信賴度相關要求進行檢討,並應依普及程度及各國動向對既有的指引進行必要之修正。 二、應用與開發:本文件建議政府部門積極使用生成式AI於業務工作上,找出提升行政效率同時不會洩漏機密之方法,並向民眾宣導AI應用之益處與正確的使用方式,以培養民眾AI相關技能與素養,藉以更進一步建構AI應用與開發之框架,如人才培育、產業環境準備、相關軟硬體開發等。