為了改善下一世代的健康,資料來源係來自於半數英國人口的英國人類基因資料庫於今年三月底正式開放給所有研究者使用。該資料庫資訊包含二萬六千筆糖尿病患者、五萬筆關節疾病患者、四萬一千筆不飲酒者,以及一萬一千筆心臟病患者的健康資訊。 英國人體基因資料庫係利用四年的時間招募來自蘇格蘭、英格蘭與威爾斯地區,年紀介於四十到六十九歲的自願捐贈者,就其採集檢體、身高、體重、體脂肪、手握力、骨頭密度、心肺功能、血壓、醫療病例、生活習慣、記憶、飲食、生理與心理情狀、聽力與視力等資訊所集結的健康資料庫,其可堪稱是世界上積累大規模人類健康資訊的來源之一。 欲使用英國人體基因資料庫的申請者,不論其係來自英國或是海外,亦不論申請者係來自學界、產業界、公益團體,或是由政府資助的研究機關(機構)、團體或個人,在本於欲從事的研究係基於健康相關與確保公眾利益的前提之下,均可向該資料庫的管理單位提出使用申請。該申請必須於網路上提出,且欲申請使用之研究必須受到英國人類基因資料庫小組的嚴謹審查,且該審查過程亦會受到英國人體基因資料庫委員會轄下的 Access Sub-Committee所監督。除此之外,具有獨立超然特徵的英國人類基因資料庫倫理與管理會議(UK Biobank Ethics and Governance Council)亦將會監督整個審查系統的運作和流程。 英國人類基因資料庫將允許研究者,在基於保障公眾利益的前提下所進行的健康相關研究,來使用該資料庫內的所有資源。該資料庫期許研究者能夠發現特殊疾病發生於人類個體上的差異性,以進而研發出一套新的治療與防範措施。除此之外,該資料庫的資源利用亦期待研究者能在具有慢性、疼痛與生命威脅性特徵的疾病上,例如癌症、心臟疾病、中風、糖尿病、老人痴呆、憂鬱症、關節炎、眼睛、骨頭和肌肉等疾病,能夠就其發生原因、預防方法與治療方式找出新的診斷和解決方法。
英國資訊委員辦公室推出資料分析工具箱協助組織檢視資料保護情形英國資訊委員辦公室(Information Commissioner's Office, ICO)於今(2021)年2月17日推出資料分析工具箱(data analytics toolkit)供所有考慮對個人資料進行資料分析的組織使用,旨在幫助組織駕馭人工智慧(Artificial Intelligence, AI)系統對個人權利所可能帶來的挑戰。 ICO表示,越來越多的組織使用AI來完成特定任務,例如使用軟體自動發現資料集(data sets)的模式,並藉此進行預測(predictions)、分類(classifications)或風險評分(risk scores),組織在使用個人資料進行資料分析時,納入資料保護的概念是至關重要的,除符合法律要求外,也能增強民眾對技術的信任與信心。 使用ICO的資料分析工具箱時,首先會詢問組織所適用的法律,並引導至相對應的頁面,並透過合法性(lawfulness)、問責與治理(accountability and governance)、資料保護原則(data protection principles)以及資料主體權利(data subject rights)等一系列的問題瞭解組織的資料保護情形,在回答所有問題之後,工具箱將產生一份報告,提供組織關於資料保護的建議,提高組織資料保護的法令遵循程度。 ICO強調,組織應該要在個人資料處理的過程中考量報告中所提及的建議,並向組織的資料保護長(Data Protection Officer, DPO)徵詢其意見,在組織委託、設計與實施資料分析時落實個人權利與自由的保障。
何謂日本「尖端大型研究設施」?所謂「尖端大型研究設施」,系指日本《特定尖端大型研究設施共用促進法》(特定先端大型研究施設の共用の促進に関する法律)中,由國立研究法人所設置,並受該法規範之研究設施。 該法之目的係在設置被認為不適合於國立實驗研究機關,或進行研究之獨立行政法人中重複設置之以高額經費購置的該研究領域中最尖端技術之研究設施設備,並於該研究領域中進行多樣化研究之活用,以發揮其最大之價值。 目前受到該法規定的研究設施包括特定同步輻射研究設施,其包含了「SPring-8」及「SACLA」等兩座大型同步輻射研究設施,與特定超級電腦設施,亦即超級電腦「京」,以及包括了高強度質子加速器「J-PARC」之一部的特定中子輻射研究設施;以SPring-8為例,該設施之網站上登載有使用情報、使用申請及參考資料等,供欲使用該設施之研究人員參考。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」