美國有線電視法節目載送規則實務現況簡介

刊登期別
第23卷,第11期,2011年11月
 

※ 美國有線電視法節目載送規則實務現況簡介, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5764&no=64&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
德國聯邦資料保護暨資訊自由官聲明病人資料保護法恐違反GDPR

  德國聯邦資料保護暨資訊自由官(Der Bundesbeauftragte für den Datenschutz und die Informationsfreiheit,BfDI)Ulrich Kelber教授於2020年8月19日指出,2020年7月3日甫由德國議會通過的病人資料保護法(Gesetz zum Schutz elektronischer Patientendaten in der Telematikinfrastruktur; Patientendaten- Schutzgesetz, PDSG),恐違反歐盟一般資料保護規則(GDPR)。   該法規定自2021年起,健康保險業者必須向被保險人(病人),提供電子病歷(ePA)。而自2022年起,病人有權要求醫生將病人相關資料記錄於電子病歷,包括健檢結果、醫學報告或X光片、預防接種卡、孕婦手冊、兒童體檢手冊、牙科保健手冊等,而被保險人更換健康保險業者時,可要求移轉其電子病歷至新的健保公司。另外,2021年起將可透過手機,下載電子處方並至藥局領取處方藥。2022年1月1日起,將全面強制使用電子處方,病人將可透過智慧手機或平板電腦,決定他人對於電子病歷之近用權限。病人若無手機,可至健保公司查看電子病歷。依照規劃,目前電子病歷的使用仍採自願性。病人可決定保存或刪除哪些資料,以及誰可以近用該文件。自2023年起,被保險人可自願提供電子病歷資料作為研究用途,而因上述研究可處理病人資料之醫師、診所和藥劑師等,有義務確保其資料安全。   BfDI於立法過程中多次強調,在導入電子病歷使用時,病人必須可完全控制自己的資料。而該法規範僅提供病人使用部分設備,例如智慧手機或平板電腦,設定其電子病歷之存取權限,此意謂著將有一段空窗期,病人無法決定其電子病歷中各文件之存取權限。而對於電子病歷中,可否僅開放部分資料供瀏覽或存取,亦受到聯邦資料保護暨資訊自由官質疑。另外,對於無法或不想在手機或平板電腦上使用上述功能的人,本法並未進一步規定,亦即2022年起,上述病人為了能夠檢查或接受醫療,必須強迫病人控制其相關資料,但目前顯然尚缺乏相關配套。此外,以資料保護角度而言,目前電子病歷之認證程序有安全疑慮,尤其是未使用電子健康卡的替代驗證程序尚不夠嚴謹,因此命令相關單位應於2021年5月前完成改善。   電子病歷是對醫療保健改善的重要一步,因此相關健康資料保護需要符合GDPR規範水平。電子病歷雖已逐漸受到認可與重視,惟當前病人資料保護法恐無法完全保護病人資料安全。因此,BfDI將透過監管手段,確保健康保險公司不會因提供電子病歷而違反GDPR。

簡介日本「u-Japan政策」

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

OECD發布《數位化推進資料治理以促進增長和福祉》、《資料治理政策制定之數位化指南》報告

2023年5、6月經濟合作暨發展組織(Organisation for Economic Cooperation and Development, OECD)在邁向數位化計畫(Going digital Project)下陸續公布53個國家地區科學技術創新政策(science, technology and innovation policy)指標。OECD另一方面也提供許多政策工具供各政府參考,如2022年12月發布《數位化推進資料治理以促進增長和福祉》(Going Digital to Advance Data Governance for Growth and Well-being),並出版《資料治理政策制定之數位化指南》(Going Digital Guide to Data Governance Policy Making),協助應對轉型為數位治理時的潛在益處與風險。 《數位化推進資料治理以促進增長和福祉》指出,數位工具發展使資料蒐集、處理的效能大幅增加,邊際成本快速下降,為經濟、社會注入新驅動力。OECD觀察到COVID-19疫情危機中,各國政府藉多樣的資料有效追蹤疾病並做出相應對策;然而,也出現資料治理不當案例,如有勞動中介機構不慎在資料應用時加深性別勞動的不平等。因此,資料成為治理的戰略資產同時也需詳加了解資料多樣化的特性,在資料跨領域產製、流通與利用的過程中一併考量其益處與風險。 《資料治理政策制定之數位化指南》則點出三個發現,並提供相應策略做為各國政府治理參考。第一,關切資料開放同步產生的益處與風險,建議應確立風險管理的文化並建置透明且開放的資料生態系,以增加使用者的能動性,俾利人們自覺主動利用資料。其次,治理框架應平衡生態系中利害交疊的人民、企業團體、政府各部門等,藉契約範本、行為準則等機制確保決策各環節中利害關係人的參與機會和框架的一致性。第三,資料的邊際成本雖一再降低,然而進入門檻、後續管理的負擔仍重,政府應持續激勵資料的基礎建設投資,促進市場競爭並解決後進者的阻礙。

TOP