日前澳洲聯邦法院針對四家唱片公司 (包括Universal、Sony、Warner以及 Festival Mushroom)聯合控告提供檔案分享Kazaa軟體的業者—Sherman Networks一案作出判決。法官Murray Wilcox駁回原告聲稱Sherman Networks違反澳洲交易行為法(Trade Practices Act)以及Sherman Networks本身有從事著作權侵害的主張。但是,法官Wilcox指出Sherman Networks授權使用者侵害原告的著作權,並有鼓勵年輕人侵害著作權的情況。Sherman Networks在Kazaa網站的網頁中放置批評反對P2P軟體的唱片公司的標語--Join the Revolution,以及贊助攻擊唱片公司的文宣--Kazaa Revolution。這些標語、文宣並未明白地鼓吹使用者分享檔案,但是這會對於青少年認為以漠視唱片公司之著作權的方式來挑戰唱片公司是一件很「酷」的事情,而Kazaa的使用者多數是青少年。
法官 Wilcox判決被告必須支付90%的訴訟費用,並指出在Sherman Networks符合下列條件之一的情況下,Kazaa可以繼續營運:
1. 必須在現有的以及未來的版本中納入強制性關鍵字過濾技術 (non optional key word filter technology),並且竭盡所能地要求既有使用者將版本更新至含有此技術的版本。
2.Altnet搜尋軟體,又稱之為TopSearch,只能提供未有侵害到他人著作權之作品的清單。
除此之外,法官 Wilcox亦為本案的上訴程序設下二個條件,第一個是上訴時間最快為明年2月,上訴法院為Full Court,第二個是Kazza軟體的修改須取得法院的認可或是唱片公司的同意。
美國佛羅里達州一名商人日常透過網路管理其帳戶資金出入,其資金主要是在美國與中南美洲間流動。該名商人發現其銀行帳戶有異常的資金流向拉脫維亞而向警方報案,經調查發現他的電腦被植入名為Coreflood的特洛伊木馬程式,致其銀行帳戶存取密碼被盜用。該名商人認為銀行明知網路上有此種危險而怠於告知客戶,且銀行明知拉脫維亞以網路犯罪猖獗而著稱,對於其帳戶內大筆的異常資金流出亦疏於防範,爰對銀行提起訴訟。據信,本案為銀行儲戶因受網路詐欺而控告其銀行的首例。
日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本經產省與國交省提出「自動駕駛推動發展與制度規劃」檢討報告日本經濟產業省於2016年11月14日召開第二次「自動駕駛商業檢討會」,邀請產官學研各界對於自動駕駛未來國際標準的動向以及諸如協調領域、社會接受度、制度和基礎建設等方面所涉議題,交換意見。 該檢討會首先注意到美國、歐洲以及韓國對於自動駕駛各式規則或指引制定的討論。在協調領域方面,檢討會指出:關於自動駕駛所需的地圖資訊,應由各汽車製造商協調,透過合作機制或規範來確保資訊與資金提供的公平性。 社會接受度方面,檢討會則提出建議考量是否需要針對不擅駕駛的高齡者或初學者,提供有效系統的必要性。在制度與基礎建設方面,檢討會則指出:以現狀而言,自動駕駛服務的商業永續性仍不明朗,必須持續進行實證試驗。 此外,為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於同年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於12月9日召開第一次會議。 該次會議討論的範圍包括:為實現無人駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。 會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「非平地道路間以車站為據點的自動駕駛服務」等議題速成立工作小組。
因應知識經濟社會 日本推動司法改革鑑於社會態度轉變與經濟面的需求,特別是隨著稅法和智慧財產權問題日益複雜,日本企業領袖紛紛延攬龐大的律師團,以借助其專長規劃並解決相關問題,以至法律專業人才需求更甚於以往。為此,日本改變壓低律師人數以及不鼓勵興訟的政策,大刀闊斧推動二次世界大戰以來最大的司法制度改革。本次司法制度大改革廣開職業考試大門,以便有足夠的律師、檢察官與法官,能在日益好訟的日本社會處理龐大民、刑事案件。 為填補需求缺口,日本政府決定將包括律師、檢察官和法官在內的法律專業人士的人數提高一倍以上,在 2018 年以前增至五萬人。同時,重大刑案將在 2009 年引進陪審團制度,以減輕法官負擔。在政府鼓勵下,日本第一所美式法學院於 2004 年成立,現在全國已有七十二所類似的法學院。過去日本大學法律系通常著重法律的學術或理論面,而新式法學院的重心則以實務訓練為主。這些法學院的畢業生不必考舊律師考試,只考專為他們設計的筆試。 我國法學教育改革研議已有幾十年,總統府人權諮詢小組在討論人權問題時,亦有專題涉及法律人養成與司法制度改革,因而研議全盤改革相關制度;行政院經建會在重要人才培育與運用的政策中,亦研擬自去( 94 )年開始推動法律專業學院制度。