歐洲藥品管理局更新利益衝突規範

  歐洲藥品管理局(The European Medicines Agency,EMA)於3月底至6月初陸續發布四份利益衝突範。包括「處理管理董事會利益衝突政策方針」(European Medicines Agency Policy on the Handling of Conflicts of Interests of the Management Board),將董事會自過去的利益衝突獨立出來單獨規範;並針對違反利益聲明揭露訂立「EMA科學委員會和專家違反利益衝突信賴程序」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Scientific Committee Members and Experts),和「EMA管理董事會違反利益衝突信賴程序」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Management Board Members);以及修定「處理管理董事會、科學委員會成員和專家利益衝突政策方針」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Scientific Committee Members and Experts)。

 

  針對專家和管理董事會所制定的處理利益衝突規範,主要目的是確保兩者在參與EMA的活動時,不會發生與醫藥業者相關聯的利益衝突,影響EMA公正性。觀察上述規範,可以發現EMA對於專家和管理董事會兩者的規範原則相當一致,皆聚焦於增進利益衝突處理過程的強健性(robustness)、有效性(efficiency)和透明性(transparency)。分別規範的原因在於兩者功能上的區別,分述如下:
1. 專家規範層面,有鑒於在先進醫藥領域中的專家有限,缺少可替代性,因此規範目的在於兼顧公正性與專業之間的平衡;
2. 管理董事會層面,由於其主要任務為監管和決策,規範上區別成員所參與活動的程度和範圍做更為細部的規範,與專家不同,並非有利益衝突就必須迴避。

 

  為進一步加強EMA處理利益衝突的強健性,EMA科學委員會和專家,以及管理董事會違反利益衝突信賴程序的主要規範內容為專家和管理董事會成員作出不實利益聲明時,EMA的處理程序。可區分為調查、聽證與修正三個階段,分述如下:
1.調查階段,首先調查系爭當事人是否為不實之利益聲明後,評估是否啟動違反利益衝突信賴程序;
2.聽證階段,召開聽證會,聽證系爭當事人陳述觀點。倘若確定違反利益衝突信賴,系爭當事人即自EMA除名;
3.修正階段,EMA將審查系爭當事人曾經參與科學審查案件的公正性,並評估是否進行補救措施。

 

  雖然EMA對於專家是否確實聲明利益缺少強制力,然而仍能透過新的利益衝突機制設計,看出EMA對完善利益衝突規範的企圖,值得近來正在修訂利益衝突機制的我國學習。

 

相關連結
相關附件
※ 歐洲藥品管理局更新利益衝突規範, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5782&no=64&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。   新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。   新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

英國Tesco於網域名稱爭議中獲得勝利

  英國一家連鎖超市Tesco(中文譯名:特易購)於2006年3月8號「英國與威爾斯高等法院」的網域名稱爭議判決中獲得勝訴,該爭議起於Tesco之廣告連結商-Elogicom 公司,向替Tesco建置廣告連結註冊服務之TradeDoubler公司登記了「tesco-diets.co.uk」與「tescodvd.co.uk」兩個網域名稱;系爭域名非指向Elogicom公司所屬網頁,而僅直接指向Tesco網站,企圖以增加使用者連結至Tesco網站之數量賺取高額之廣告連結佣金。   Tesco對Elogicom公司主張商標權之侵害及搭便車,並請求移轉網域名稱;Elogicom則提起反訴請求給付佣金。該案法官認為Elogicom是利用「tesco」之名稱採取「釣魚」(fishing) 的方式,誘引不喜歡利用搜尋引擎而習慣於網路位址列鍵入猜測域名之網路使用者連結至其所設立之錯誤網站,藉由網站之自動連結功能跳頁至Tesco網站而賺取連結佣金,即使該公司並未使用該網站連結至與Tesco有營業競爭關係之網站,但仍因此利用Tesco之名賺取不正當利益並造成Tesco之商譽受到損害,判決Tesco勝訴並駁回Elogicom公司之反訴。

歐盟執委會提出「2050低碳經濟策略規劃藍圖」

  為邁向低碳經濟時代,建立歐洲成為具競爭力之低碳經濟體,歐盟執委會(European Commission)於2011年3月8日向歐洲議會(European Parliament)提出「2050低碳經濟策略規劃(A Roadmap for Moving to a Competitive Low-Carbon Economy in 2050)」,並設定2050年低碳總目標,宣示將透過加強低碳技術研究發展、推動能源效率使用等方式,降低對石化燃料依賴,並提昇區域內更多就業機會。   隨著近期中東與北非地區石油危機,原油價格節節高升,已嚴重影響歐洲國家每年能源支出經費,並降低未來各國經濟成長率。歐盟執委會認為,必須積極促進歐洲國家,經由投入科技研發、提昇能源效率,有效抑制不斷提昇的能源成本,推動歐盟邁向低碳經濟社會;並且,所設定目標及推動措施,倘若有所遲緩或推延,越晚投入將導致日後所需投入經費成本更為昂貴,悔不當初。「2050低碳經濟策略規劃」所設定之目標為,規劃透過各種符合成本效率(Cost-Efficient)措施及方法,推動歐盟區域內溫室氣體排放量至2030年降低40%、至2040年降低60%、至2050年降低80%(以1990年排放量為基準),達成低碳經濟願景目標。     歐盟執委會表示,未來應強化推動低碳技術之研究發展,促進未來更廣泛運用,並強調應更全面加強推動策略性能源科技研究計畫(Strategic Energy Technology Plan , SET-Plan),未來10年內歐盟將再額外增加50 billion歐元投資,加強推動能源科技相關研發工作,及未來可供運用之工具措施。   「2050低碳經濟策略規劃」中,詳細規劃推動步驟,並區分各大領域分別施行。以電力部門(Power Sector)領域為例,運用低碳技術、潔淨技術設備所產製電力,至2020年將達到降低45%--60%比例之排放量,到2050年,所有發電技術之溫室氣體排放量更將降低至可接近於0;而對於「工業部門」所設定目標,2050年達成降低80%之目標,對於「家庭及辦公建築」部份,設定2050年可降低90%之目標,而「運輸部門」則設定於2050年達成降低60%之目標。此外,歐盟執委會更指出投資「智慧電網(Smart Grid)」的重要性,將可促使「需求端(Demand-Side)」更具效率性,更廣泛且分散之電力調配中心,以及啟動運輸系統電力化之時代。   低碳經濟社會所帶來福祉,並可降低歐盟每年能源支出,及對於石化燃料進口依賴程度,也促成轉變改以低碳技術產製電力能源,作為可行的替代因應方案;以及,低碳經濟社會型塑推動,除了投入經費研發技術外,相關運用更須透過教育、訓練、推廣,廣泛使大眾接受且樂於使用新興技術,如此未來將可衍生種類與數量均會更多之就業機會,也有助益於經濟成長;此外,推動低碳經濟亦可改善生活品質及健康生活,未來實際效應可改善公共健康、減少醫療費用支出、及降低對生態環境消耗破壞,均屬良善效益。   然而,歐盟執委會這些推動措施,亦傳出有反對聲音。「歐洲商業(Business Europe)」團體就對外表示,他們反對「2050低碳經濟策略規劃」所設定的這些超高標準,他們認為相關推動措施,未來將會嚴重傷害歐盟境內企業發展,因為主要競爭者如中國、日本及美國,相較而言,均未設定這麼高的推動目標。未來歐盟執委會這些規劃藍圖是否落實達成,值得後續觀察。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP