歐盟植物品種事務局(Community Plant Variety Office, CPVO)與歐盟智慧財產局(European Union Intellectual Property Office, EUIPO)於2022年4月28日聯合發佈「植物品種權制度對歐盟經濟和環境影響」執行摘要(Impact of the Community Plant Variety Rights System on the EU Economy and the Environment–Executive Summary),以量化方式顯現「歐盟植物品種權」(Community Plant Variety Rights, CPVR)制度的影響:
(1)若無CPVR制度,則在2020年時,歐盟耕地作物的收成量會比實際情形減少6.4%、水果減少2.6%、蔬菜減少4.7%、觀賞植物減少15.1%;換言之,因有CPVR制度帶來的額外收成,足以將耕地作物多供給予5,700萬人、水果多供給予3,800萬人,蔬菜多供給予2,800萬人。
(2)以總體經濟學(macro-economic)的角度觀之,若無CPVR制度帶來的額外收成量,歐盟在世界貿易的地位會惡化,而境內的消費者也將面臨更高的農作物價格。受CPVR制度保護的農作物對歐盟GDP之「額外」增長貢獻約為130億歐元,其中耕地作物約佔有71億歐元、水果11億歐元、蔬菜22億歐元、觀賞植物25億歐元。
(3)而因CPVR制度帶來的農作物額外收成,使歐盟農業的僱用情形提升;以耕地作物來說,增加近25,000個工作機會、園藝作物19,500個、觀賞植物45,000個,總計增加近90,000個工作機會。此僅單就上游的農業及園藝產業而言,其與下游產業(例如:食品處理業)合計增加近80萬個就業機會。
(4)不僅工作機會增加,從業者報酬也有所提高;相較於未有CPVR制度前,耕地作物從業者可獲得12.6%更高的報酬、園藝作物從業者可獲得11%更高的報酬。
(5)受有 CPVR保護之公司總計僱用了70,000名以上之員工,而其營業總額超過350億歐元;此等公司多為中小企業(SMEs),其佔有CPVR申請量90%以上,而其目前持有约歐盟整體60%的CPVR。
(6)在有CPVR制度後,歐盟農業及園藝業所排放的溫室氣體(greenhouse gas, GHG)每年減少6,200公噸;此二產業所需用水量減少了超過140億立方公尺。
綜上,由於減少對環境之衝擊、於農業與園藝上減少資源之使用、使從業者收入增加,及使消費者用更低廉價格購得農產品,故CPVR制度對於聯合國永續發展目標(Sustainable Development Goals)有所貢獻。除此之外,本執行摘要亦提及CPVR制度有潛力符合歐盟執委會(European Commission, EC)「歐洲綠色政綱」(The European Green Deal)目標。
本文為「經濟部產業技術司科技專案成果」
澳洲政府於2023年12月通過身分核驗法(Identity Verification Services Act 2023,以下稱IVS法)及其相應修正案(Identity Verification Services (Consequential Amendments) Act 2023,以下稱修正案)。聯邦政府考量IVS法案將影響既有法規,同時提交修正案,兩法案旨在建構身分核驗服務架構,促進驗證流程之監管與透明化。澳洲政府規劃之數位身分系統正逐步法制化,IVS法與同年11月通過之法定聲明修正案(Statutory Declarations Amendment Act 2023)將為該系統奠定基礎。修正案涉及2005年澳洲護照法,以下僅簡要介紹IVS法之驗證服務內涵。 該法規定三項聯邦政府部門可提供之身分驗證服務:文件核驗服務(Document Verification Service, DVS)、臉部核驗服務(Face Verification Service, FVS)與臉部識別服務(Face Identification Service, FIS),並授權相關部門發展對應之認證設施,以電子通訊方式確認身分核驗請求。請求身分驗證服務需獲個人明確同意並告知相關權利後方可進行,其驗證型態分為:核驗(Verification)與識別(Identification),前者涉及確認個人為所宣稱之身分的過程,以一對一比對回傳個人所稱是否為真;後者則為識別個人身分之過程,透由多人或多份文件逐一比對後回傳個人身分。文件核驗使用頻率及範圍最廣泛,公、私部門皆可申請使用;臉部核驗目前僅聯邦政府有使用權限,地方與州政府及私部門未來將可透過書面協議參與。臉部識別因其驗證方式涉及個資使用與隱私議題,請求者限於證人保護機構、執法或情報人員。 IVS法案及其相應修正案於2023年9月提送國會討論,同年12月經參、眾兩院通過。法案審議期間曾有倉促立法的爭議,有論者認為當局急於為公、私部門行之有年的身分核驗行為提供法規依據,並安排極短的法案辦論時間以限縮討論。
G7發布金融機關因應勒索軟體危脅之基礎要點由於近年來勒索軟體對國際金融帶來重大影響,七大工業國組織G7成立網路專家小組CEG(Cyber Expert Group),並於2022年10月13日訂定了「金融機關因應勒索軟體危脅之基礎要點」(Fundamental Elements of Ransomware Resilience for the Financial Sector),本份要點是為因應勒索軟體所帶來之危脅,提供金融機關高標準之因應對策,並期望結合G7全體成員國已施行之政策辦法、業界指南以及最佳之實踐成果,建立處置應變之基礎,加強國際金融的韌性。該份要點內容著重於民營之金融機關(private sector financial entities),或關鍵之第三方提供商(critical third party providers),因其本身有遵守反洗錢和反恐怖主義之融資義務,但也可依要點訂定之原意,在減少自身受到勒索軟體之損害上,或在處置與應變上有更多的彈性。而日本金融廳於2022年10月21日公布該份要點之官方翻譯版本,要點所提列之重點如下: 1.網路安全策略與框架(Cybersecurity Strategy and Framework): 將因應勒索軟體威脅之措施,列入金融機關整體的網路安全策略與框架之中。 2.治理(Governance): 支付贖金本身可能於法不容許,也可能違背國家政策或業界基準,金融機關須在事件發生前,檢視相關法規,並針對潛在的被制裁風險進行評估。 3.風險及控制評估(Risk and Control Assessment): 針對勒索軟體之風險,應建立控制評估機制並實踐之。因此可要求金融機關簽訂保險契約,填補勒索軟體造成的損害。 4.監控(Monitoring): 針對潛在的勒索軟體,金融機關有監控其活動進而發現隱藏風險之義務,並向執法與資通安全機關提供該惡意行為之相關資訊。 5.因應處置、回覆(Response): 遭遇勒索軟體攻擊之事件,就其處置措施,須依原訂定之計劃落實。 6.復原(Recovery): 遭遇勒索軟體攻擊之事件,將受損之機能復原,須有明確的程序並加以落實。 7.資訊共享(Information Sharing): 須與組織內外之利害關係人共享勒索軟體之事件內容、資訊以及知識。 8.持續精進(Continuous Learning): 藉由過往之攻擊事件獲取知識,以提高應變勒索軟體之能力,建立完善的交易環境。 此要點並非強制規範,因此不具拘束力,且整合了2016年G7所公布的「G7網路安全文件之要素」(G7 Fundamental Elements of Cybersecurity document)之內容。綜上述CEG所提列重點,針對我國金融機關在抵禦網路攻擊之議題上,應如何完善資安體制,與日本後續因應勒索軟體之政策,皆值得作為借鏡與觀察。
韓國人工智慧風險管理趨勢研析韓國人工智慧風險管理趨勢研析 資訊工業策進會科技法律研究所 2020年6月25日 人工智慧技術正不斷地突飛猛進,後更因深度學習應用帶來令人難以置信的進步,迅速成為眾多產業轉型的重要推手。然而,當眾人專注於追求人工智慧的逐利時,也隱然意識到人工智慧與現實世界的互動,似已超越人類認知能力,或依當下技術知識經驗仍難加以掌握。以自駕車為例,其利用感測器感知外界進行影像辨識、理解預測進而做出決策的整體流程上,不論是在路人、車輛等圖像辨識、現場就路人及車輛行動之預測,乃至後端根據前階段路人、車輛行動預測與現在位置判斷最佳路徑的過程,處處是不可測的風險。申言之,從辨識正確率、現場狀況理解度至演算法決策來說,吾人所得掌控者有限。主因在於人工智慧的複雜與靈活性特色,實難通過統一概念加以界定。次者是人工智慧的自動化決策本身,事實上難以被確實地預見。甚至,就人工智慧可控性上,亦充斥各類不確定要素,特別是訓練資料偏差、又或設計者主觀意識之偏頗都可能造成預想之外的結果。 截至目前為止,人工智慧應用已然帶來已引發諸多風險議題,包含於開發、設計及製造端所論及之風險議題涵蓋歧視與偏見,如資料偏差、樣本資料結構性不平等[1]致使機器學習或有偏誤,進而影響判斷,產出具有歧視或偏見之結果[2];個人資料及隱私保護上,則係因人工智慧訓練對資料具有大量需求,涉及個人資料部分,將面臨蒐集(踐行告知程序)、處理和利用(於當事人同意之範圍內處理、利用)是否善盡保護義務與合乎法規要求;演算法黑箱帶來不透明的決策,難以預測與檢驗決策流程、判準是否有誤[3]。就此,考慮到人工智慧之重要性與風險,或有必要立基於風險預防理念進行相關風險控管,甚或以風險責任分擔角度,討論相關權責分配,以應對未來可能衍生的危害或重大風險。 人工智慧風險控管之法律基礎無法悖於倫理道德基礎。觀諸國際間討論,韓國早在2007年即已倡議機器人道德理念,並在2008年起接連有相關立法舉措。本文將以之為中心,探究其人工智慧在風險控管之相關立法政策措施,盼可從韓國做法中反思我國推行人工智慧風險管理之方向。 壹、事件摘要 一、韓國智慧機器人相關法制措施 (一)《智慧機器人發展和促進法》風險管控介紹 2008年9月韓國《智慧機器人發展和促進法》(지능형 로봇 개발 및 보급 촉진법)正式生效。該法旨在鋪設智慧機器人產業發展之法律基礎,包含在法律中嘗試引入智慧機器人定義(指通過識別外部環境並判斷狀況後自動運行之機器設備,包含機器設備運行所必要軟體),以此作為後續促進產業發展、規劃機器人責任歸屬或保險等討論之開展基礎;另外也以促進產業發展觀點,訂定產品安全開發與布建之支持法源依據;挹注國家科研能量確保技術穩定;建置智慧機器人產業分類系統,依此做為機器人產業統計基礎,為國家在機器人管理及政策提供相關數據。 其中,特別的是除了促進性規範外,亦首度於法律提出機器人倫理道德的概念,賦予主管機關訂定與「機器人倫理道德憲章」(로봇윤리헌장)相關內容之義務。 所謂「機器人倫理道德憲章」,係指針對智慧機器人功能及其智慧化發展,規範製造和使用人員之指導方針,以防杜危險發生並避免機器人不利於人類生活品質。換言之,機器人倫理道德憲章可認為是針對智慧機器人開發、製造、使用上的準則,盼可用以防止因智慧機器人功能而衍生之社會損害。就此,韓國工商部曾擬定《機器人倫理道德憲章草案》,可參考如下: 第一條(目標)機器人倫理道德憲章目標係為人類和機器人共存共榮,並確認以人類爲中心的倫理規範。 第二條(人與機器人的共同原則)人類和機器人應當維護相互之間生命的尊嚴、資訊和工程倫理。 第三條(人類倫理)人類在製造和使用機器人時,必須使用良好的方法判斷和決定。 第四條(機器人倫理)機器人是順從人類命令的朋友或是協助者、夥伴,不得傷害人類。 第五條(製造商倫理規範)機器人製造商有義務製造維護人類尊嚴之機器人,同時,必須承擔回收機器人、資訊保護義務。 第六條(使用者倫理)機器人使用者應當尊重機器人爲人類的朋友,禁止非法改造和濫用機器人。 第七條(實施的承諾)政府和地方政府應實施有效措施,以體現《憲章》的精神[4]。 觀察《智慧機器人發展和促進法》內涵,富有藉重法律效果與效能引領智慧機器人產業發展之精神,企圖形成政府政策借助立法促成經濟層面活動向上發展。然而,隨智慧機器人技術逐漸深入社會,韓國旋即意識到人工智慧在權益維護、風險管控上仍有進一步補強之必要,進而提出《機器人基本法草案》,並開展韓國在機器人倫理道德、歸責原則之相關討論,以順應社會整體的變革。 (二)《機器人基本法草案》 如前所述,意識到人工智慧發展已然滲入日常生活,有必要在機器人普及化的社會接受過程中,應對各類問題預先防範。韓國國會議員遂於2017年7月19日提出《機器人基本法草案》(로봇기본법)以反映機器人發展趨勢與問題。 《機器人基本法草案》主要目的是為機器人融入社會過程中的政策方向、原則進行引導,以有助於機器人產業健全發展。是以,該法在風險控管部分,通過二類做法予以調控,一是建立倫理道德準則之原則、二是嘗試提出歸責原則以釐清相關應用所生之爭議。 一者,藉道德倫理界線之提出使產業更為允當運用人工智慧。借用產品生命週期之概念,分就設計、製造以及使用者責任三階段規範。在設計階段,著重於產品內部構造、軟體介面設計的安全性,另就不侵犯人權及社會利益上,強調預先從設計確保產品永續性、倫理性及使用上的安全性;在製造階段,則從遵法性、說明義務及產品維護修繕責任等,揭示製造商在產品製造、銷售應行之事項;最後,則從使用者角度,以應用階段各項自律、他律規範,明示遵法義務與道德倫理原則,並特別指明宜避免過度成癮。 次者,在責任分配與歸屬上,於現行法令無以適用情況下,允許受損害者得向機器人之銷售者或提供者求償。然而,為免製造商或銷售者過度承擔賠償責任之風險,亦設置免責條款,規定當產品因缺陷致使損害發生,而該缺陷係以當時技術水準所無法發現之情況,或是該缺陷是製造商遵守當時機器人法令所規定標準所肇致,則將免除製造商之損害賠償責任。 綜合前述,《機器人基本法草案》在倫理道德及責任分配歸屬的風險管控上,提出諸多可資參考之方式,然而在基本法審議過程中,韓國政府認為雖有必要管制風險,卻不宜過早以立法手段介入遏止創新,而未能通過韓國國民議會。 (三)韓國人工智慧國家戰略 雖然《機器人基本法草案》未能立法通過,然而韓國相關立法脈絡已展現除關注於促進智慧機器人產業發展外,在倫理道德、責任上的風險調控亦不可偏廢態勢,且從智慧機器人進一步聚焦於人工智慧。 2019年12月第53屆總理會議(국무회의)[5],韓國擬定涵蓋科學資通訊技術部在內所有部會共同推動之「人工智慧國家戰略」(AI 국가전략)作為橫跨經濟和社會的創新專案[6],以攻守兼備方式發展人工智慧。分從技術、產業、社會三方面著手,為韓國發展人工智慧半導體產業取得先機,進而拔得在相關領域的頭籌;次者,完備先進資通訊技術基礎設施,借力人工智慧積極轉型為新世代數位政府;其三,從教育扎根,建設人工智慧教育體系以培植相關領域專業人才;第四,秉持「以人為本」精神發展人工智慧,建立人工智慧倫理原則、擴張就業安全網保障勞工,使人工智慧所產生之效益可散發至社會各個角落。預計通過該戰略,將可在2030年壯大韓國之數位競爭力,使人工智慧經濟產值增長至4550000億韓圜(約3800億美元),提升國民生活品質[7]。 整體而言,該戰略建立基於技術的立法、以人為本的道德以及改善整體社會法律體系三者為核心。基於技術的立法,如《信用資訊法》修訂,允許假名化資料利用,以鬆綁人工智慧資料應用需求,並平衡隱私保障;以人為本的道德,像是參考國際間道德倫理之標準,推行「人工智慧道德標準行動計畫」(AI 윤리기준 및 실천방안 마련),加速研擬建立在安全、責任或是擔保上的規範[8];改善整體社會法律體系,包含修正《國民就業援助法》擴大就業安全網,透過保險、教育、就業支援等方式協助受人工智慧衝擊影響之勞工、《就業政策基本法》中研擬為人工智慧業務建立相應人才教育。三者之推動,除帶動人工智慧產業蓬勃發展外,也兼顧社會層面道德、權益保障。 貳、重點說明 一、以剛性立法手段推進產業發展 觀察韓國,其人工智慧發展態度係以鼓勵為重。主因在於對企業來說,採用新興科技應用或可能囿於法遵成本、研發投資耗費過鉅、相關領域人才稀缺等多重因素而有所疑慮。有鑑於前開問題,韓國以正面態度,在風險控管措施上,嘗試藉由法規手段解消人工智慧發展所面臨之問題,即在賦予政府確實制訂與推進人工智慧發展政策責任,使業者可預期政府態度;次者,設置法律作為行政機關提供產品安全開發與布建支援依據,確保科研能量技術的穩定;再者,藉由智慧機器人分類系統建立產業管理與統計基礎,俾利後續依統計數據進行決策。 至於權益保障、風險如何評價及規範,雖有論者倡議另制定《機器人基本法草案》彌補《智慧機器人發展和促進法》於法律內部體系權利價值詮釋上的缺陷,然經立法成本與當時技術成熟度之衡量,並未過早規範技術之發展。 二、借軟性規範措施型塑兼容並顧之環境 另方面,觀察韓國在面對人工智慧機器人時的應對方式,發現在促進發展上,韓國無不餘力地大力採用剛性立法手段,以鋪設技術、投資所需之基礎建設及支援。而就尚難定論之技術風險管控,像是倫理道德、歸責原則調控等,考量技術尚未臻成熟,實難以剛性立法方式加之管理,而有以政策方式先試先行之傾向,形塑具有包容彈性之環境,鼓勵人工智慧機器人產業之投入,並依此作為後續法規調適之基礎。 鑒於人工智慧機器人所涉領域之多元,誠然有必要以宏觀角度全盤檢視與調適相應之規範及措施。故而,韓國2019年底提出富含權益保障與經濟逐利精神之「人工智慧國家戰略」,並鏈結不同部會共司建立彈性包容人工智慧機器人產業之環境。 參、事件評析 綜觀上述,韓國面對人工智慧及機器人,對內,以剛性立法手段,先行鋪設智慧機器人產業發展之基礎,包含界定智慧機器人範圍、賦予行政機關訂定倫理規範等一定義務、設置行政支持法源依據、以分類系統規劃作為數據統計基礎進行決策等,以拉抬、激勵企業投入研發,促成經濟層面活動之擴散與發酵;對外,以軟性規範宣示韓國政府發展智慧機器人產業態度、吸引國際間產學研能量挹注,並同步促成內部社會法體制之調整,不難看出韓國政府的企圖與決心,且整體上已約略有鼓勵、促進逐漸轉變為管理層面意味。 在我國方面,亦已意識到人工智慧風險管理之重要性,立法委員並在2019年5月倡議《人工智慧發展基本法草案》希望以制定基本法之方式,從研究、開發乃至整合等,厚植我國人工智慧實力,並嘗試建立人工智慧開發準則與倫理原則。韓國前述有關人工智慧之規範作法,或許可茲我國借鏡,就促進人工智慧技術經濟層面效益之面向,可由政府擬定具實質效力之法規範推動之;就現尚難明確定位之倫理準則及風險控管,採用軟性規範方式,先行以具包容性之政策、指引等作法試行,以待日後技術臻至成熟穩定,再行考量轉化為立法管理之必要。 [1] Crawford, K. et al. The AI Now Report: The Social and Economic Implications of Artificial Intelligence Technologies in the Near-Term, AI Now, 2016, https://ainowinstitute.org/AI_Now_2016_Report.pdf (last visited May. 22, 2019) [2] Cassie Kozyrkov, What is AI bias?, https://towardsdatascience.com/what-is-ai-bias-6606a3bcb814 (last visited May. 22, 2019) [3] BBC, The real risks of Artificial Intelligence, http://www.bbc.com/future/story/20161110-the-real-risks-of-artificial-intelligence(last visited May. 22, 2019). [4] 김성원 선임,지능정보사회의 도래와 법·윤리적 과제- 인공지능기술의 발달을 중심으로 -, National Industry Promotion Agency(2017/11/15), p10. [5] 總理會議係韓國特有的系統,主要由總統、總理以及15位至30位不等之國務院成員共同組成,成員包含各部會之首長。主要職能是做為國家決策的機構,並協調政策或行政事務。詳細資料可參見:http://theme.archives.go.kr/next/cabinet/viewIntro.do。 [6] 〈정부, AI 국가전략 발표…”AI 반도체 세계 1위 목표”〉,Bloter,2019/12/17,http://www.bloter.net/archives/364678 (最後瀏覽日:2020/2/1)。 [7] 〈인공지능(AI) 국가전략 발표〉,과학기술정보통신부,2019/12/17,https://www.msit.go.kr/web/msipContents/contentsView.do?cateId=_policycom2&artId=2405727 (最後瀏覽日:2020/2/1)。 [8]〈인공지능 국가전략〉,관계부처 합동,2019/12,頁36-38。
日本經濟產業省公布「再生能源導入促進關聯制度改革小委員會報告書」日本經濟產業省「促進再生能源關連制度改革小委員會(再生可能エネルギー導入促進関連制度改革小委員会)」於2016年2月5日公布了報告書,該報告書集結了自2015年9月以來,共計13次的討論整理,未來FIT制度改革方向,將以此為根基。 提出該報告的目的在於,達成最加能源構成方案(エネルギーミックス)之目標,於2030年導入22-24%之再生能源,冀望在最大限度導入再生能源,並與抑制國民負擔之間調合並存。 該報告提出五大修正制度方針,分別簡述如下: (一)針對未運行案件對應修正認證制度 (1) 進一步加強撤銷認證制度之報告徵收及聽證程序。 (2) 創設新認證制度,應確認該發電事業的實施可能性後,才得認定為FIT。 (二)促進長期安定發電的配套措施 (1) 事業者應做適當的檢查及維修、發電量定期報告,制定廢棄及回收等應遵守事項。若有違反情事,主管機關得發出改善命令或是取消認定資格。 (2) 確認並遵守所涉及之土地使用條例、公告認定資訊、提供地方政府建構計畫內容。 (三)導入成本效率 (1) 設定中長期之「收購價格」目標。 (2) 以Top Runner等方式決定具備「成本效率」之收購價格,亦即以最佳方式選擇。 (3) 賦課金減免制度為一個可持續的機制,同時透過活用賦課金以確保基金,並確認對象事業的節能方案及對國際競爭力的影響等(檢討減免率)。 (四)擴大導入開發週期長(リードタイムの長い)之電力 (1) 開發週期較長之電力,預先於數年前決定認證案件之收購價格。 (2) 進行環評期間減半(通常為3~4年)等必要規制改革。 (3) 於FIT認證前,得申請接續系統。 (4) 針對不同電力的挑戰檢討對應的支援方法 (五)擴大導入電力系統改革之優勢 (1) 基於「廣域系統整備計畫」,計畫性地推動整備廣域系統。 (2) 對應區域系統之限制,公告系統資訊以及建設費用之單價。此外,繼續活用投標邀請規則(入札募集ルール),共同負擔系統升級費用。 (3) FIT收購義務人由零售事業者轉換為輸配電事業者,並促進全國區域間電力調配(広域融通)之順暢性。收購後之電力,得經由交易市場外直接輸送予零售事業者。 (4) 整備再生能源事業者間公平之輸出控制規則(公平な出力制御ルール)。