歐洲藥物管理局(European Medicines Agency, EMA)今(2012)年7月6日修正發布「藥品交互作用試驗指針」(Guideline on the Investigation of Drug Interactions),EMA表示這是該指針自1997年發布以來最大的修正,內容包括藥廠如何進行新藥與已經流通使用的藥品的潛在交互作用研究,以及新藥與食品的交互作用研究。
「藥品交互作用試驗指針」內容包括用藥建議方案,其乃基於臨床相關交互作用以及調整用藥劑量、監控病人用藥情形之可行性研究為基礎。同時,有關草藥使用的建議方案也包括在內。
EMA表示,新的修正內容使「藥品交互作用試驗指針」與藥品交互作用研究科學之發展現況趨於一致,例如現已能透過少數的精密設計研究,即可預測臨床相關藥品交互作用的結果,以及在了解近年酵素觸發技術(enzyme induction)與藥物載體(drug-transporter)間的交互作用上的科學進展。
藥物交互作用對於用藥的安全與效用極為重要,許多病人,尤其是年長者經常需要同時服用多種藥物,因多種藥物交互作用而產生的負作用(adverse effects)是患者反覆就醫的重要因素之一,且可能減低個別藥物原有的療效。
「藥品交互作用試驗指針」新修正內容將於2013年1月1日生效,全文共計七部分,主要重點在第五部分的藥物動力學(Pharmacokinetic)交互作用研究,內容包括:從研究進行方式即藥品的吸收、分布、代謝、移轉到人體試驗設計、草藥與特殊食品產品、以及產品特性標示事項等都有建議規範,其全文可至EMA官方網站下載。
本文為「經濟部產業技術司科技專案成果」
英國政府於2024年12月19日依據《經濟犯罪及公司透明法》(Economic Crime and Corporate Transparency Act)的授權,發布《公司及有限責任合夥企業(資料保護與揭露及相應修訂)辦法》(The Companies and Limited Liability Partnerships (Protection and Disclosure of Information and Consequential Amendments) Regulations 2024),該辦法已於2025年1月27日生效。 根據現行《公司(地址揭露)辦法》(Companies (Disclosure of Address) Regulations 2009),經營公司之個人應登錄並公開其個人資料,包含居住地址,以利利害關係人聯繫並確保其對業務負責。但公開個人資料,將導致詐欺和身分盜用之風險,因此現行《公司(地址揭露)辦法》規定於特定情形下,如經營公司之個人曾遭受家庭暴力,或從事警察、法官、議員等職務,得向主管機關申請保護其居住地址不對外公開。新辦法將進一步強化對個人隱私之保護,允許將居住地址作為公司註冊地址之情形,亦得適用前述居住地址保護之規定。此外,對於進行清算程序的公司,經營公司之個人亦得申請不公開其居住地址,惟為兼顧第三方權益,僅得於公司清算程序開始後六個月後提出申請,以便第三方對公司提起訴訟。 隨著科技發展,對於個人資料之保護日益重要,英國此次新辦法擴大居住地址保密適用情形,設法在隱私保護與利害關係人權益間取得平衡,其細緻化地衡酌資訊透明化及個人資料保護兩項基本原則之作法,或可成為我國未來在思考相關議題之參考。
美國羅德島州通過《羅德島資料透明度與隱私保護法》,保護個人資料不被濫用,該法案將於2026年1月1日生效隨著網路蓬勃發展,個人資料之蒐集、處理及利用越來越普遍,同時也造成資料洩漏和濫用的問題日益嚴重,進而對隱私和個人資料構成侵害與威脅,為保障人民隱私和增強資料透明度,羅德島州州議會於2024年通過了一項具有里程碑意義的法律—《羅德島資料透明度與隱私保護法》(Rhode Island Data Transparency and Privacy Protection Act)。其核心內容包括以下幾個方面: 一、 適用對象:於羅德島州州內經營商業之營利組織(下簡稱企業),或主要生產製造商品、提供服務予該州居民之企業,且: 1. 在前一年度控制或處理超過三萬五千筆個人資料(personally identifiable information)者,但單純為完成付款交易之資料除外。 2. 控制或處理超過一萬筆個人資料,且總營收超過百分之二十係源自於銷售個人資料者。 二、 資料蒐集企業與資料當事人權利義務: 1. 選擇同意與退出權:前開適用對象應賦予資料當事人即消費者就其個人資料之蒐集、處理,行使選擇同意權(opt in)與退出權(opt out)。 2. 資料蒐集與利用透明度:要求企業蒐集個資前,須明確告知資料當事人蒐集目的、利用範圍以及可能的資料共享對象,並取得其同意。 3. 控制權:資料當事人有權向企業請求查詢、修改及刪除自己的資料,企業在接到請求後,必須即時處理該請求,並於45天之法定期限內准駁其請求;必要時得於通知當事人合理事由後,展延一次。 4. 安全維護措施:企業必須採取適當之安全維護措施來保護個人資料不受未經授權的近用、洩漏、竄改或毀損。前述措施,包括但不限於資料加密、權限管控等技術上管控措施。 5. 資料保護評估:企業須就「對消費者傷害風險較高」活動進行評估並保存文件化紀錄,包括: (1) 為精準行銷之目的(Targeted Advertising); (2) 銷售個人資料; (3) 為資料剖析之目的處理個人資料,且具合理可預見的風險將可能對消費者之財務、身體或名譽造成不公平或欺騙性的待遇,或非法的衝擊影響。 《羅德島資料透明度與隱私保護法》強化企業對資料隱私保護之責任,並督促其遵守法律要求。預計施行後將能加強對資料主體個人資料知情權、控制權、透明度及資料安全之保障。
美國白宮發布「美國就業計畫」說明文件,加強投資基礎建設與科技研發美國白宮於2021年3月31日發布「美國就業計畫」說明文件(FACT SHEET: The American Jobs Plan),針對美國當前所面臨基礎建設老舊、失業率攀升、氣候變遷與來自中國的技術競爭等問題,預計在未來八年內每年投資約GDP的1%,共投入約2兆美元(約合新台幣56兆元)於修復與升級國家基礎建設、振興製造業、投資基礎科學研究、支持供應鏈、推動能源轉型、幼兒教育及長照醫療等項目上。 本說明文件指出,雖然美國為世界上最富裕的國家,但許多基礎建設都逐漸變得老舊或不合時宜,部份人民仍無法享有高速網路與價格可負擔的房屋,而在疫情的衝擊下不僅導致工作機會喪失,更威脅到國家經濟安全。除此之外,美國在科技研發、製造與人才培育上開始落後於最大的競爭對手,顯示政府有必要加快在基礎建設與科技研發的投資,以重建美國的國家競爭力並創造更多的就業機會。 針對投資基礎建設部分,包含交通基礎建設如修復高速公路、橋樑,並升級港口、機場及運輸系統,並改善飲水、電力與網路布建,提供全體人民可負擔、可靠的高速寬頻服務;除了提高基礎建設在面對氣候變遷危機時的韌性,也提供美國人民更安全、可靠、便利的生活條件。在更新基礎建設的同時,將採用符合永續性及創新性的建築材料,並優先使用在美國製造與販售的零組件,以支持國內產業與創造就業機會。 而在投資科技研發部分,相對於中國大陸正大力投資於研發,其研發支出為世界第二,美國在投資科技研發占GDP比率卻持續下降,為了支持研發團隊克服高度創新(high-innovation)技術的障礙,有必要提高對於國內研究人員、實驗室及大學院校的投資。因此白宮呼籲國會支持國家科學基金會(NSF)投資500億美元設立技術局(technology directorate),用於整合國家研究資源,投入半導體及高級通訊技術、高級能源技術及生物技術的研發,並預計投資400億美元於全國實驗室研究設施與網路的升級。 除此之外,白宮規劃投資350億美元於研發克服氣候變遷危機的技術解決方案,包括開發減少排放和建立氣候適應力的新方法,並呼籲國會投資100億美元於傳統黑人大學(HBCUs)、弱勢族群教育機構(MSIs)的科技研發以避免種族與性別落差,投資200億美元於區域創新中心及社區再生基金,向國家標準技術協會(NIST)投資140億美元推動產官學合作研發,以及規劃310億美元用於中小企業信貸、創投及研發資金,特別是地區型的小型孵化器及創新聚落,以支持有色人種及弱勢族群的新創事業成長。
日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。