紐西蘭最為歷史悠久的IT專家組織(Institute of IT Professionals NZ)於2012年5月發布雲端運算實務準則(Cloud Computing Code of Practice),藉此彌補實務上缺乏雲端運算標準與實務指針的問題;本準則為自願性遵循規範,以紐西蘭為市場的外國雲端業者、及紐西蘭的業者皆可適用之,並可向公眾宣示其已遵行此準則,然倘若未遵行而為遵行之宣示,則屬誤導或詐欺行為而觸犯公平交易法(Fair Trading Act 1986)。本準則有四個主要目標:1. 促進紐西蘭雲端產業的服務標準;2. 確立應揭露(disclosure)的標準;3. 促進雲端服務提供者與用戶間就資料保護、隱私與主權等事項的揭示;4.強化紐西蘭雲端運算產業的整合性。
依據此準則,雲端業者的資訊揭露範圍至少應包含業者基本資料、資訊所有權、管理及保護、與服務提供之適當管理措施等。在資訊所有權層面,業者應表明是否對所上載的資料或資訊主張所有權;而當用戶透過雲端服務利用或傳輸的資料而儲存於其他上游業者的網路或系統時,業者應確認其資料所有權之歸屬。
在資料管理與保障層面,業者應表明遵從何種資訊安全標準或實務,其已向美國雲端產業聯盟(Cloud Security Alliance)進行STAR登記,或者已通過其他標準的驗證;此外應表明儲存資料伺服器之一處或多處所在地。再者,業者亦須表明服務關係繼續中或終止後,業者或客戶對於客戶所擁有資料之存取權限。
在服務提供的適當管理措施上,包含業者的備份(Backup)程序及維護措施,皆應為揭露,使用戶得據以評估是否採取進一步的資料保護措施;此外包括服務的繼續性要求,如備援措施…等,亦應為揭露;又鑒於雲端服務有地理多樣性(Geographic Diversity)的特質,業者應使用戶知悉其提供服務、或營業活動的地點,以判斷此等服務可能適用的法權(Legal Jurisdiction)。
依據此準則,雲端業者亦可例如透過服務水準協議(Service Level Agreement)對個別用戶承諾特別的服務支援方案,以提供更好的服務品質。
本文為「經濟部產業技術司科技專案成果」
G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢 資訊工業策進會科技法律研究所 2025年03月10日 七大工業國組織(Group of Seven,下稱G7)於2024年10月10日至11日在義大利羅馬舉辦第四屆資料保護與隱私機構圓桌會議(Data Protection and Privacy Authorities Roundtable,下稱圓桌會議),並發布「G7 DPAs公報:資料時代的隱私」(G7 DPAs’ Communiqué: Privacy in the age of data,下稱公報)[1],特別聚焦於人工智慧(AI)技術對隱私與資料保護的影響。 壹、緣起 由美國、德國、英國、法國、義大利、加拿大與日本的隱私主管機關(Data Protection and Privacy Authorities, DPAs)組成本次圓桌會議,針對數位社會中資料保護與隱私相關議題進行討論,涵蓋「基於信任的資料自由流通」(Data Free Flow with Trust, DFFT)、新興技術(Emerging technologies)、跨境執法合作(Enforcement cooperation)等三大議題。 本次公報重申,在資通訊技術主導的社會發展背景下,應以高標準來審視資料隱私,從而保障個人權益。而DPAs作為AI治理領域的關鍵角色,應確保AI技術的開發和應用既有效且負責任,同時在促進大眾對於涉及隱私與資料保護的AI技術認識與理解方面發揮重要作用[2]。此外,公報亦強調DPAs與歐盟理事會(Council of Europe, CoE)、經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)、亞太隱私機構(Asia Pacific Privacy Authorities, APPA)、全球隱私執行網路(Global Privacy Enforcement Network, GPEN)及全球隱私大會(Global Privacy Assembly, GPA)等國際論壇合作的重要性,並期望在推動資料保護與建立可信賴的AI技術方面作出貢獻[3]。 貳、重點說明 基於上述公報意旨,本次圓桌會議上通過《關於促進可信賴AI的資料保護機構角色的聲明》(Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI)[4]、《關於AI與兒童的聲明》(Statement on AI and Children)[5]、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》(Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions)[6],分別說明重點如下: 一、《關於促進可信賴AI的資料保護機構角色的聲明》 繼2023年第三屆圓桌會議通過《關於生成式AI聲明》(Statement on Generative AI)[7]後,本次圓桌會議再次通過《關於促進可信賴AI的資料保護機構角色的聲明》,旨在確立管理AI技術對資料保護與隱私風險的基本原則。G7 DPAs強調許多AI技術依賴個人資料的運用,這可能引發對個人偏見及歧視、不公平等問題。此外,本聲明中還表達了擔憂對這些問題可能透過深度偽造(Deepfake)技術及假訊息擴散,進一步對社會造成更廣泛的不良影響[8]。 基於上述考量,本聲明提出以下原則,納入G7 DPAs組織管理的核心方針[9]: 1. 以人為本的方法:G7 DPAs應透過資料保護來維護個人權利與自由,並在AI技術中提供以人權為核心的觀點。 2. 現有原則的適用:G7 DPAs應審視公平性、問責性、透明性和安全性等AI治理的核心原則,並確保其適用於AI相關框架。 3. AI核心要素的監督:G7 DPAs應從專業視角出發,監督AI的開發與運作,確保其符合負責任的標準,並有效保護個人資料。 4. 問題根源的因應:G7 DPAs應在AI的開發階段(上游)和應用階段(下游)找出問題,並在問題擴大影響前採取適當措施加以解決。 5. 善用經驗:G7 DPAs應充分利用其在資料領域的豐富經驗,謹慎且有效地應對AI相關挑戰。 二、《關於AI與兒童的聲明》 鑒於AI技術發展可能對於兒童和青少年產生重大影響,G7 DPAs發布本聲明表示,由於兒童和青少年的發展階段及其對於數位隱私的瞭解、生活經驗有限,DPAs應密切監控AI對兒童和青少年的資料保護、隱私權及自由可能造成的影響程度,並透過執法、制定適合年齡的設計實務守則,以及發佈面向兒童和青少年隱私權保護實務指南,以避免AI技術導致潛在侵害兒童和青少年隱私的行為[10]。 本聲明進一步闡述,當前及潛在侵害的風險包含[11]: 1. 基於AI的決策(AI-based decision making):因AI運用透明度不足,可能使兒童及其照顧者無法獲得充足資訊,以瞭解其可能造成重大影響的決策。 2. 操縱與欺騙(Manipulation and deception):AI工具可能具有操縱性、欺騙性或能夠危害使用者情緒狀態,促使個人採取可能危害自身利益的行動。例如導入AI的玩具可能使兒童難以分辨或質疑。 3. AI模型的訓練(Training of AI models):蒐集和使用兒童個人資料來訓練AI模型,包括從公開來源爬取或透過連線裝置擷取資料,可能對兒童的隱私權造成嚴重侵害。 三、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》 考慮到個人資料匿名化、假名化及去識別化能促進資料的創新利用,有助於最大限度地減少隱私風險,本文件旨在整合G7成員國對於匿名化、假名化與去識別化的一致理解,針對必須降低可識別性的程度、資訊可用於識別個人的程度、減少可識別性的規定流程及技術、所產生的資訊是否被視為個人資料等要件進行整理,總結如下: 1. 去識別化(De-identification):加拿大擬議《消費者隱私保護法》(Consumer Privacy Protection Act, CPPA)、英國《2018年資料保護法》(Data Protection Act 2018, DPA)及美國《健康保險可攜性及責任法》(Health Insurance Portability and Accountability Act , HIPAA)均有去識別化相關規範。關於降低可識別性的程度,加拿大CPPA、英國DPA規定去識別化資料必須達到無法直接識別特定個人的程度;美國HIPAA則規定去識別化資料須達到無法直接或間接識別特定個人的程度。再者,關於資料去識別化的定性,加拿大CPPA、英國DPA認定去識別化資料仍被視為個人資料,然而美國HIPAA則認定去識別化資料不屬於個人資料範疇。由此可見,各國對去識別化規定仍存在顯著差異[12]。 2. 假名化(Pseudonymization):歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)及英國《一般資料保護規則》(UK GDPR)、日本《個人資料保護法》(個人情報の保護に関する法律)均有假名化相關規範。關於降低可識別性的程度,均要求假名化資料在不使用額外資訊的情況下,須達到無法直接識別特定個人的程度,但額外資訊應與假名化資料分開存放,並採取相應技術與組織措施,以確保無法重新識別特定個人,因此假名化資料仍被視為個人資料。而關於假名化程序,日本個資法明定應刪除或替換個人資料中可識別描述或符號,歐盟及英國GDPR雖未明定具體程序,但通常被認為採用類似程序[13]。 3. 匿名化(Anonymization):歐盟及英國GDPR、日本個資法及加拿大CPPA均有匿名化相關規範。關於降低可識別性的程度,均要求匿名化資料無法直接或間接識別特定個人,惟可識別性的門檻存在些微差異,如歐盟及英國GDPR要求考慮控管者或其他人「合理可能用於」識別個人的所有方式;日本個資法則規定匿名化資料之處理過程必須符合法規標準且不可逆轉。再者,上述法規均將匿名化資料視為非屬於個人資料,但仍禁止用於重新識別特定個人[14]。 參、事件評析 本次圓桌會議上發布《關於促進可信賴AI的資料保護機構角色的聲明》、《關於AI與兒童的聲明》,彰顯G7 DPAs在推動AI治理原則方面的企圖,強調在AI技術蓬勃發展的背景下,隱私保護與兒童權益應成為優先關注的議題。與此同時,我國在2024年7月15日預告《人工智慧基本法》草案,展現對AI治理的高度重視,融合美國鼓勵創新、歐盟保障人權的思維,針對AI技術的應用提出永續發展、人類自主、隱私保護、資訊安全、透明可解釋、公平不歧視、問責等七項原則,為國內AI產業與應用發展奠定穩固基礎。 此外,本次圓桌會議所發布《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》,揭示各國在降低可識別性相關用語定義及其在資料保護與隱私框架中的定位存在差異。隨著降低可識別性的方法與技術不斷創新,這一領域的監管挑戰日益突顯,也為跨境資料流動越發頻繁的國際環境提供了深化協調合作的契機。在全球日益關注資料保護與隱私的趨勢下,我國個人資料保護委員會籌備處於2024年12月20日公告《個人資料保護法》修正草案,要求民間業者設置個人資料保護長及稽核人員、強化事故通報義務,並針對高風險行業優先實施行政檢查等規定,以提升我國在數位時代的個資保護水準。 最後,本次圓桌會議尚訂定《2024/2025年行動計畫》(G7 Data Protection and Privacy Authorities’ Action Plan)[15],圍繞DFFT、新興技術與跨境執法合作三大議題,並持續推動相關工作。然而,該行動計畫更接近於一項「基於共識的宣言」,主要呼籲各國及相關機構持續努力,而非設定具有強制力或明確期限的成果目標。G7 DPAs如何應對數位社會中的資料隱私挑戰,並建立更順暢且可信的國際資料流通機制,將成為未來關注的焦點。在全球共同面臨AI快速發展所帶來的機遇與挑戰之際,我國更應持續關注國際趨勢,結合自身需求制訂相關法規以完善相關法制,並積極推動國際合作以確保國內產業發展銜接國際標準。 [1]Office of the Privacy Commissioner of Canada [OPC], G7 DPAs’ Communiqué: Privacy in the age of data (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/communique-g7_241011/ (last visited Feb 3, 2025). [2]Id. at para. 5. [3]Id. at para. 7-9. [4]Office of the Privacy Commissioner of Canada [OPC], Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_ai/ (last visited Feb 3, 2025). [5]Office of the Privacy Commissioner of Canada [OPC], Statement on AI and Children (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_child-ai/ (last visited Feb 3, 2025). [6]Office of the Privacy Commissioner of Canada [OPC], Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/de-id_20241011/ (last visited Feb 3, 2025). [7]Office of the Privacy Commissioner of Canada [OPC], Statement on Generative AI (2023), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2023/s-d_20230621_g7/ (last visited Feb 3, 2025). [8]Supra note 4, at para. 11. [9]Supra note 4, at para. 18. [10]Supra note 5, at para. 5-6. [11]Supra note 5, at para. 7. [12]Supra note 6, at para. 11-15. [13]Supra note 6, at para. 16-19. [14]Supra note 6, at para. 20-25. [15]Office of the Privacy Commissioner of Canada [OPC], G7 Data Protection and Privacy Authorities’ Action Plan (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/ap-g7_241011/ (last visited Feb 3, 2025).
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
英國BEIS發佈燃煤電廠邁向未來低碳之路的公眾諮詢英國商業、能源和產業策略部(Business, Energy and Industrial Strategy, BEIS)於2016年11月9日發布公眾諮詢報告「英國燃煤電廠:邁向未來低碳之路」,儘管過去燃煤發電對於滿足英國電力需求發揮了關鍵作用,然而,最近煤炭的重要性隨著再生能源發電的增長和新燃氣電廠的建設而下降。煤炭是碳密集度最高的化石燃料,它每天產生的二氧化碳是天然氣的兩倍,因此,減少發電排碳最直接有效的方法就是減少對燃煤發電的依賴。 2015年燃煤發電僅佔英國總發電量的四分之一,而目前仍在運營的八個燃煤電廠佔英國總發電量約15%,這些燃煤電廠正在不斷老化,以現代標準來看其發電效率已是相對低下,並且需要昂貴的修繕費用以符合當前的空氣品質標準。因此,近年來有許多燃煤電廠關閉,而當這些燃煤電廠停業時,往往是在短時間內才對電力市場發出通知,關廠增加了短期電力供應安全的壓力,除非電力市場對於這些發電容量的損失有足夠的預期。 基於上述理由,本次公眾諮詢探討英國政府該如何規範高排放燃煤電廠關閉的相關措施,並為投資者提供更大的市場確定性,以新的燃氣發電機組代替燃煤電廠關閉時的發電容量。 BEIS提出2025年高排放燃煤電廠應符合的兩種減碳選項─確保電廠使用碳捕捉與封存(Carbon Capture and Storage, CCS)或修改排放績效標準(Emissions Performance Standard, EPS): (1)要求現有燃煤發電廠裝設CCS技術且確保所有電廠使用CCS技術,並符合現行英國排放績效標準(EPS)。 (2)修改現行排放績效標準(EPS),由每年排放限制強化為即時排放限制,以達到2025年汰除燃煤電廠的目標。 另外英國政府也將就燃煤電廠是否已充分減少排放二氧化碳,以換取繼續運行的替代方案進行公眾意見徵求。上述這二種方案都會使燃煤電廠將二氧化碳排放量降至等於或低於新建燃氣發電廠的排放量,此份公眾諮詢將結束於2017年2月8日。
美國廢止FCC對ISP之隱私權規則2016年10月27日,FCC依據傳播法案(Communication Act)第222條通過《寬頻用戶隱私保護規則》(Rules to Protect Broadband Consumer Privacy, 下稱2016 Privacy Order)。2016 Privacy Order主要包含以下三點: 選擇加入(Opt-in):當使用或分享消費者之「敏感資訊」,須事先取得消費者明確之同意。「敏感資訊」包括精確的地理定位資訊、財務資訊、健康資訊、孩童資訊、社會安全號碼(Social Security Number, SSN)、網站瀏覽與應用程式使用紀錄,以及通訊內容。 選擇退出(Opt-out):對於符合消費者期待的「非敏感資訊」,除非客戶Opt-out,ISP業者皆能在未取得消費者事先同意之情況下自由使用與分享。例如電子郵件位址與服務介面資訊(service tier information)。 例外:推定客戶會同意之資訊,例如在客戶與ISP業者建立關係後,不須額外取得寬頻服務或計費之同意。 2016 Privacy Order通過後受到ISP業者大力抨擊,尤其是網站瀏覽與應用程式使用紀錄亦須取得消費者事先同意之部分,其認為如此可能扼殺電子商務發展,消費者亦可能被不必要的警示轟炸。由於2016 Privacy Order引起諸多不平,因此通過後半年,美國參議院與眾議院分別於2017年3月投票廢止,總統並於4月3日正式簽署此份國會審查法案(Congressional Review Act)。 廢止《寬頻用戶隱私保護規則》之原因為,消費者之個人資料雖可受到保護,但該規則僅適用於寬頻服務提供者與其他電信供應商,並不包含網站與前端服務(edge services)。是以僅ISP業者受到較嚴厲之管制,其餘網路服務則由FTC管轄,而FTC對隱私權之規範較為寬鬆,因此可能發生提供不同服務的兩家業者使用同一份客戶資料,受到的管制程度卻不同之情形。 贊成2016 Privacy Order之議員與消費者自助組織(consumer-advocacy groups)表示ISP業者應受到較嚴厲之規範,因消費者能輕易在網站間轉換,卻不能輕易更換ISP,且ISP得以取得消費者在所有網站上之瀏覽資料,但如Google與Facebook等大廠雖非ISP業者,卻亦能取得不限於自身網站的客戶瀏覽資料。 由於《寬頻用戶隱私保護規則》已正式廢止,FCC將不得再通過其他相同或實質上相同之規範,對ISP業者之管制回歸《傳播法案》第222條,亦即,對於網站瀏覽與應用程式使用紀錄之使用或分享,不須取得客戶之事先同意。