紐西蘭IT專家組織2012年5月發布雲端運算實務準則

  紐西蘭最為歷史悠久的IT專家組織(Institute of IT Professionals NZ)於2012年5月發布雲端運算實務準則(Cloud Computing Code of Practice),藉此彌補實務上缺乏雲端運算標準與實務指針的問題;本準則為自願性遵循規範,以紐西蘭為市場的外國雲端業者、及紐西蘭的業者皆可適用之,並可向公眾宣示其已遵行此準則,然倘若未遵行而為遵行之宣示,則屬誤導或詐欺行為而觸犯公平交易法(Fair Trading Act 1986)。本準則有四個主要目標:1. 促進紐西蘭雲端產業的服務標準;2. 確立應揭露(disclosure)的標準;3. 促進雲端服務提供者與用戶間就資料保護、隱私與主權等事項的揭示;4.強化紐西蘭雲端運算產業的整合性。

 

  依據此準則,雲端業者的資訊揭露範圍至少應包含業者基本資料、資訊所有權、管理及保護、與服務提供之適當管理措施等。在資訊所有權層面,業者應表明是否對所上載的資料或資訊主張所有權;而當用戶透過雲端服務利用或傳輸的資料而儲存於其他上游業者的網路或系統時,業者應確認其資料所有權之歸屬。

 

  在資料管理與保障層面,業者應表明遵從何種資訊安全標準或實務,其已向美國雲端產業聯盟(Cloud Security Alliance)進行STAR登記,或者已通過其他標準的驗證;此外應表明儲存資料伺服器之一處或多處所在地。再者,業者亦須表明服務關係繼續中或終止後,業者或客戶對於客戶所擁有資料之存取權限。

 

  在服務提供的適當管理措施上,包含業者的備份(Backup)程序及維護措施,皆應為揭露,使用戶得據以評估是否採取進一步的資料保護措施;此外包括服務的繼續性要求,如備援措施…等,亦應為揭露;又鑒於雲端服務有地理多樣性(Geographic Diversity)的特質,業者應使用戶知悉其提供服務、或營業活動的地點,以判斷此等服務可能適用的法權(Legal Jurisdiction)。

 

  依據此準則,雲端業者亦可例如透過服務水準協議(Service Level Agreement)對個別用戶承諾特別的服務支援方案,以提供更好的服務品質。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 紐西蘭IT專家組織2012年5月發布雲端運算實務準則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5797&no=67&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用

  在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。   資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。   不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。   由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。   美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。   「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。   不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。

經濟部技術處研究機構智慧財產管理制度評鑑與台灣智慧財產管理規範(TIPS)驗證內容比較

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

日本內閣府公開徵集「研究安全和風險管理系統開發支援計畫」,加強研究安全保障

日本內閣府公開徵集「研究安全和風險管理系統開發支援計畫」,加強研究安全保障 資訊工業策進會科技法律研究所 2025年03月10日 壹、事件摘要 內閣府科學技術創新推進事務局(科学技術・イノベーション推進事務局),於2025年2月19日發布公告,自2025年2月19日至3月24日公開徵集國內負責經濟安全重要技術的補助機關和研究機構加入「研究安全和風險管理系統開發支援計畫」 [1](研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業,下簡稱研究安全計畫),以加強研究安全之保障。 貳、重點說明 日本曾發生研究者在不知情的情形下與北韓研究者共著論文而危害研究安全事件,根據日本經濟新聞2024年11月28日報導,自2016年底北韓受到聯合國加強制裁以來,共有八篇北韓研究機構的國際共著論文發表,包含東京大學、名古屋大學等日本五所大學的研究者皆在共同著作者之列,雖研究者皆表示與北韓無聯繫,但此行為仍可能違反聯合國制裁規定,且一名涉及本事件的研究者在論文發表後,仍被任命為國內主導研究計畫的主持人,負責百億日圓預算及先進技術的管理,顯示日本研究安全管理問題[2]。 為避免類似事件發生及提升日本科技實力,以及配合G7國家關於研究安全與誠信的政策,內閣府公開徵集負責經濟安全重要技術的補助機關和研究機構加入研究安全計畫。該計畫將蒐集與分析國際合作研究所需的公開資訊,並整合後於2025年出版「研究安全與誠信程序手冊」(RS/RI に関する手順書)。 所謂經濟安全重要技術,係指《促進特定重要技術研發及適當運用成果基本指南》(特定重要技術の研究開発の促進及びその成果の適切な活用に関する基本指針)所列,包含AI、生物技術等先進技術領域[3],內閣府將透過此計畫驗證學研機構所實施之研究安全與誠信措施是否得宜,並與學研機構分享典範實務,參考政府制定的研究安全與誠信規範,提出分析與改善方法。 研究安全計畫將支援日本國內研究機構和其他處理對經濟安全重要技術的機關,在國內外開展聯合研究時採取必要的技術外流防止措施,一方面提供分析資源,如協助分析研究人員及研究機構的公開資訊(職業經歷、其他工作以及研究資金流向等),另一方面支援實施風險管理的相關費用,並針對整體防止技術外流的風險控管體系進行評估後給予建議[4]。 研究安全計畫參與對象為補助研發之機關及領取補助進行研究開發的機構(如公立研究機構、研究開發公司、大學等),且應有足夠能力執行完整風險控管計畫。另計畫評選期間,研究機構不得有內閣府所定停止補助、停止推薦等情形[5]。 內閣府為結合國家政策與國際標準,全面提升日本在經濟安全重要技術領域的研究安全與誠信管理能力,透過分析與資金支援,協助研究機構構建完善的風險控管體系,確保研究中的技術外流防範措施得以落實。此舉不僅為日本科技實力的長期發展奠定基石,亦為維護國家經濟安全及國際信譽提供堅實保障。 參、事件評析 近年研究安全成為國際間之重要議題,為防止技術外流,各國亦有許多政策,如美國國家科學基金會(National Science Foundation, NSF)啟動「保護美國研究生態系統社群 」[6](Safeguarding the Entire Community of the U.S. Research Ecosystem, SECURE)計畫,並成立 SECURE 中心;加拿大政府公告「三機構關於敏感技術研究和關注從屬性政策指南」[7](Tri agency guidance on the Policy on Sensitive Technology Research and Affiliations of Concern, STRAC Policy)等,在如此趨勢下,日本亦開始注重研究安全之保障。 日本內閣府此次推動研究安全計畫,顯示日本政府已深刻意識到研究安全議題的迫切性與重要性。隨著全球科技競爭日益激烈,國際間的技術交流與合作頻繁,但也伴隨著技術外流、竊取敏感研究資訊等風險。尤其是北韓等受國際制裁國家,可能透過隱匿身分或間接合作的方式,取得敏感資訊,對國際社會的安全構成潛在威脅。 日本政府推動研究安全計畫,透過提供分析資源、資金支援及風險控管體系的評估建議,協助研究機構建立完善的防範機制,期望透過以上防範機制,全面提升日本在研究安全管理能力,並確保技術外流防範措施得以落實。 然而,此計畫的推動仍存在一些挑戰與考量。首先,如何在確保研究安全與維護學術自由之間取得平衡,避免過度限制造成研究自主性與創新能力的損害,將是重要課題。此外,背景審查與資訊分析機制的建置,需注意個人隱私保護,避免引發研究人員的反彈與抵制。再者,國際合作研究的審查程序若過於繁瑣,也可能影響日本研究機構與國際間的合作意願,甚至對國際學術地位造成負面影響。 因此,日本政府在推動此項政策時,應積極參考美國、加拿大等國的經驗,建立透明且具彈性的管理制度,並與國際夥伴保持密切溝通,協調一致的研究安全標準,避免孤立於國際科研社群之外。綜上所述,日本此次行動對於提升國內研究安全與誠信管理能力,並維護國家經濟安全,具有正面且積極的意義,未來仍需持續關注政策推行的成效與後續調整方向,以達成長期穩健的發展目標。 [1]〈研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業の公募について〉,內閣府,https://www8.cao.go.jp/cstp/kokusaiteki/integrity/kobo_r7.html (最後瀏覽日:2025/3/10)。 [2]日本経済新聞,〈東大など5大学、知らずに北朝鮮と共同研究 「寝耳に水」〉, 20254/11/28,https://www.nikkei.com/article/DGXZQOUE293WI0Z20C24A1000000/ (最後瀏覽日:2025/3/10)。 [3]〈特定重要技術の研究開発の促進及びその成果の適切な活用に関する基本指針〉,內閣府,https://www.cao.go.jp/keizai_anzen_hosho/suishinhou/doc/kihonshishin3.pdf (最後瀏覽日:2025/3/10)。 [4]〈研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業公募要領〉,內閣府,頁3,https://www8.cao.go.jp/cstp/kokusaiteki/integrity/kobo_r7/kobo_r7.pdf (最後瀏覽日:2025/3/10)。 [5]同前註,頁4。 [6]NSF-backed SECURE Center will support research security, international collaboration, US National Science Foundation, https://www.nsf.gov/news/nsf-backed-secure-center-will-support-research (last visited Mar. 10, 2025). [7]Tri-agency guidance on the Policy on Sensitive Technology Research and Affiliations of Concern (STRAC Policy), Natural Sciences and Engineering Research Council of Canada, https://www.nserc-crsng.gc.ca/InterAgency-Interorganismes/RS-SR/strac-rtsap_eng.asp (last visited Mar. 10, 2025).

TOP