紐西蘭最為歷史悠久的IT專家組織(Institute of IT Professionals NZ)於2012年5月發布雲端運算實務準則(Cloud Computing Code of Practice),藉此彌補實務上缺乏雲端運算標準與實務指針的問題;本準則為自願性遵循規範,以紐西蘭為市場的外國雲端業者、及紐西蘭的業者皆可適用之,並可向公眾宣示其已遵行此準則,然倘若未遵行而為遵行之宣示,則屬誤導或詐欺行為而觸犯公平交易法(Fair Trading Act 1986)。本準則有四個主要目標:1. 促進紐西蘭雲端產業的服務標準;2. 確立應揭露(disclosure)的標準;3. 促進雲端服務提供者與用戶間就資料保護、隱私與主權等事項的揭示;4.強化紐西蘭雲端運算產業的整合性。
依據此準則,雲端業者的資訊揭露範圍至少應包含業者基本資料、資訊所有權、管理及保護、與服務提供之適當管理措施等。在資訊所有權層面,業者應表明是否對所上載的資料或資訊主張所有權;而當用戶透過雲端服務利用或傳輸的資料而儲存於其他上游業者的網路或系統時,業者應確認其資料所有權之歸屬。
在資料管理與保障層面,業者應表明遵從何種資訊安全標準或實務,其已向美國雲端產業聯盟(Cloud Security Alliance)進行STAR登記,或者已通過其他標準的驗證;此外應表明儲存資料伺服器之一處或多處所在地。再者,業者亦須表明服務關係繼續中或終止後,業者或客戶對於客戶所擁有資料之存取權限。
在服務提供的適當管理措施上,包含業者的備份(Backup)程序及維護措施,皆應為揭露,使用戶得據以評估是否採取進一步的資料保護措施;此外包括服務的繼續性要求,如備援措施…等,亦應為揭露;又鑒於雲端服務有地理多樣性(Geographic Diversity)的特質,業者應使用戶知悉其提供服務、或營業活動的地點,以判斷此等服務可能適用的法權(Legal Jurisdiction)。
依據此準則,雲端業者亦可例如透過服務水準協議(Service Level Agreement)對個別用戶承諾特別的服務支援方案,以提供更好的服務品質。
本文為「經濟部產業技術司科技專案成果」
美國網路安全暨基礎設施安全局(CISA)於2025年8月13日發布該機關與美國、澳洲、加拿大、德國、荷蘭、紐西蘭等國共計八個國安資安相關機構,合作訂定之《工控資安基礎:適用於擁有者與營運者的資產清冊指引》文件,旨在針對易受惡意網路行為攻擊且提供重要服務的能源、水務、製造業及其他領域關鍵基礎設施營運技術(Operational Technology,OT)系統,協助其資產擁有者與營運者建置與維護完整的OT資產清冊,並輔以OT分類體系(Taxonomy)。 OT資產清冊範圍涵蓋組織OT系統與相關軟、硬體,該指引主要說明OT資產擁有者與營運者建置與維護OT資產清冊的流程,包含: 1. 定義清冊範疇與目標(Define Scope and Objectives) 2. 辨識資產及蒐集屬性資料(Identify Assets and Collect Attributes) 3. 建立分類體系(Create a Taxonomy to Categorize Assets) 4. 管理與蒐集資料(Manage and Collect Data) 5. 實現資產全生命週期管理(Implement Life Cycle Management); 此外透過OT分類體系可幫助區分優先序、管理所有OT資產,有助於風險識別、漏洞管理,以及資安事件應變;有關如何建立OT分類體系,該指引亦提供流程建議如: 1. 根據功能及關鍵性執行資產分類(Classify Assets) 2. 對資產功能類型與其通訊路徑進行分類(Categorize (Organize) Assets and their Communications Pathways) 3. 建構體系架構與互動關係(Organize Structure and Relationships) 4. 驗證資產清冊資料準確度與圖像化(Validate and Visualize) 5. 定期檢查並更新(Periodically Review and Update) 該指引認為,建置OT資產清冊並輔以OT分類體系對期望建立現代化防禦架構的擁有者與營運者而言至關重要。透過上述作為,資產擁有者與營運者得以識別其環境中應加以防護及管控的關鍵資產,並據以調整防禦架構,建構相應的資安防禦措施,以降低資安事件對組織任務(Mission)與服務持續性(Service Continuity)的風險與影響。該指引亦強調關鍵基礎設施之OT與IT(資訊技術)部門間之跨部門協作,並鼓勵各產業組織參考指引步驟落實OT資產盤點與分類,以提升整體關鍵基礎設施資安韌性。
加拿大法院命令ISP業者提供非法下載者資訊給著作權人加拿大聯邦法院在Voltage Pictures LLC v. Does一案中核發命令要求第三人ISP業者TekSavvy提供在該案中被控非法下載電影的2千多位使用者姓名與地址資訊給著作權人Voltage電影公司,此例在著作權、科技與隱私的微妙關係中投出一記變化球。在本案例中,法院需要對2件事進行判斷,一是是否核發該命令,二是若核發命令,法院如何降低對隱私權的侵害並確保權利人以正當的目的使用相關資訊。 在判斷是否核發命令時,法院考量到下列因素,包括:法院命令是唯一合理取得資訊的方式,TekSavvy擁有係爭資訊,且命令不會對其造成不當的花費與影響。同時,認定Voltage有真實的意圖向非法下載者提出侵權訴訟,且對於資訊的揭露並無不當的目的。此外,在本案所提供的證據上,也認定Voltage確為善意的主張(bona fide claim),因此其著作權比受影響的使用者隱私權利益來得重要等因素。 不過,法院仍然必須進一步決定Voltage在本案中,是否將以善意的方式(bona fide manner)使用其所取得之隱私資訊,法院考量英、美著作權蟑螂(copyright trolls)濫發警告信勒索使用者的案例,認為在命令中對Voltage聯繫接觸使用者的方式作了限制與要求是平衡著作權與隱私權,及同時抑制著作權蟑螂的最好作法,包括:法院有權檢視並要求修改Voltage寄給使用者的信件、信件中必須表明尚未有侵權的裁決、收件者未必有責、並提示收件者可尋求法律意見,同時要求該信件以法院命令做為附件,確保命令不會被濫用。 Voltage一例對於著作權人、ISP業者與使用人而言相當關鍵,著作權人只要有適當的證據就可以取得法院命令要求ISP業者提供侵權使用者資訊,不過法院也表明會透過命令內容的限制,平衡著作權與隱私權,抑制蟑螂類型的商業模式在加拿大蔓延。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
日本立憲民主黨提出SDGs基本法案,以達成2030永續發展目標日本立憲民主黨於2023年6月13日向眾議院提出「SDGs基本法案」(持続可能な開発の目標の達成に向けた諸施策の総合的かつ一体的な推進に関する法律案),旨在達成2015年聯合國大會通過之「2030永續發展目標(SDGs)」。 去年6月立憲民主黨曾向參議院提出相關法案,但未審議就被廢止,此次係因日本政府針對SDGs雖有列舉相關議題,惟未對每個目標和達成度進行評估,僅是羅列先前政策,故立憲民主黨擔憂日本無法於2030年實現永續發展目標,重新向眾議院提出SDGs基本法案,希冀透過制定基本方針及必要事項,課予政府實施相關政策,法案主要內容摘要如下: 一、 提出基本原則要求政府應提供國民、經營者、民間團體等構成社會之多元主體,都能參與實現永續發展目標之機會,並應平等對待處於弱勢地位者保障其基本人權,使其受到尊重、充分發揮其個性及能力。 二、 另因永續發展目標與國際相互間有密切關聯,政府應確保國際合作,使目標一體化。 三、 除課予國家、地方自治體應提出SDGs基本方針外,亦要求地方公共團體、企業,在開展各項目活動時,應努力且有責任地一同促進實現永續發展目標。 四、 為實現目標,要求政府須採取必要法制、財政、稅制等措施,政策之內容亦應反映多種民意、確保公正性、透明性,且每年都要向國會提出施政成果及評估報告。 五、 設置「永續發展目標推進本部」(持続可能な開発目標達成推進本部),並邀請專家、利害關係人召開「永續發展目標推進會議」(持続可能な開発目標達成推進会議),一同評估基本方針政策及其達成狀況。 六、 由於實現永續發展目標並不因2030年後任務即刻終止,關於2031年以後之政策,政府應考量社會措施、國際動向等,依評估結果再採取必要之措施。 針對SDGs基本法眾議院已於10月20日交由委員會審議中,是否通過該法案仍待後續觀測,但已展現日本推動SDGs之決意。我國雖非聯合國之會員國,惟於2016年亦自願性回應全球永續發展行動與國際接軌,並於2021年成立「行政院國家永續發展委員會」,力求實現永續發展目標;然而僅靠政府機關的努力恐怕力有未逮,可參考日本作法納入國民、民間團體、企業等多元參與者,攜手合作共同實現SDGs。