美國總統布希於本( 8 )月 8 日簽署能源法案,法案目的除減少對國外能源依賴外,另亦授權興建一座新核能發電廠。布希政府希望於 2010 年前開始建造核能廠。 儘管核能爭議大,但現今國際油價已飆高達每桶 63 美元,在美國參眾兩院日前通過、布希總統今簽署的能源法案中,同意興建的新核電廠,是美國自 1979 年三哩島事件以來,第 1 座預定興建的核能廠。 能源法案的通過,被視為是布希政府一大勝利,也是相關利益團體石油公司的勝利。布希自 2001 年上台即大力鼓吹此法案,經 4 年多爭議,眾參院才分別在 7 月 28 、 30 日通過。 除新建核電廠外,能源法案內容還包括:准許在海岸探勘石油與天然氣,這項鬆綁引起環保人士質疑;提供美國能源公司超 10 年 145 億美元的減稅優惠,這項優惠讓華府輿論質疑,減稅是「肥了石油公司,苦了消費者與納稅人」;另外,鼓勵開發新的潔淨能源、再生能源,提供 18 億美元的獎助,這項具有環保意義、找尋替代能源的條文,也被質疑資助少得可憐。
歐盟希望類比電視頻譜供給WiMax之用歐盟資訊社會和媒體委員會委員Viviane Reding女士,2007年6月1號在希臘一場和寬頻議題相關的演講說中建議,當歐洲電視類比頻段逐漸淘汰時,這些超高頻段頻譜(Ultra High Frequency)應該分派給寬頻網路技術(例如:WiMax)之用。 WiMax是Worldwide Interoperability for Microwave Access的縮寫,一般中譯為「全球互通微波存取」,是一種新興的無線通訊技術,其傳輸速度最高可達70Mbps,傳輸範圍最廣可達30英哩,對個人、家庭與企業的行動化將有很大助益。由於WiMax目前頻譜規劃限制在5.7FHz和3.4GHz區段裡,如果安排在500到800MHz超高頻段上,那WiMAX基地台涵蓋的範圍將提高,並能大大地減低成本。 Viviane Reding女士在該演說中提到,「無線寬頻技術的出現,是克服偏遠或農村地區數位落差現象的重要要素,且是處理數位落差的唯一世代機會。因此,需要一個頻譜的政策框架,釋放這種潛力。」她同時也提到,如果期望以低價擁有更大幅度的無線寬頻速度,則需要釋出具高傳輸性的頻譜。簡言之,決策者應仔細探究從類比轉換成數位化後所產生的數位落差問題,同時思考有無可能在UHF開拓出空間給無線寬頻。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)