2009年,馬里蘭州立法通過去氧核醣核酸(下稱DNA)採集法(DNA Collection Act),允許警方向已經被起訴但尚未定讞之犯罪嫌疑人採集DNA樣本,其適用對象主要在於暴力犯罪或一級竊盜案件。對此問題,美國大約有26州立有與馬里蘭州類似的法案,例如維吉尼亞州的執法單位對於暴力犯罪在經過逮捕後即可進行DNA採集。然而,該法案卻引發了隱私權利與公眾安全之平衡的爭論。
此次爭議爆發於Alonzo Jay King Jr. v. State of Maryland案,案件中Alonzo Jay King Jr.在2009年被起訴暴力攻擊,且因此被警方採集DNA,而後又在經過DNA比對之後,發現與2003年一宗強制性交案件所遺留下的DNA樣本符合,並據此判決Alonzo Jay King Jr.強制性交罪。本案經Alonzo Jay King Jr.上訴高等法院後,高等法院認為調查人員採集其基因資料並以之與舊案件進行比對,已經侵犯了美國憲法第四修正案所賦予人民的合理隱私期待,屬於不合法的搜索,並據此判決禁止向犯罪嫌疑人採集DNA樣本。本案目前正在最高法院上訴中,而最高法院首席法官John Roberts日前發布了一份命令,阻止了高等法院判決的生效,並使得馬里蘭州在最高法院作出判決之前仍然能夠採集DNA;全案預計將在10月進行聽證,未來,最高法院將如何判決,值得吾人注意。於平台上販賣盜版商品,長期困擾著許多電子商務平台。做為美國電子商務龍頭之一的亞馬遜,近年也遭受外界指責未盡防止盜版的責任。儘管亞馬遜聲稱已盡力處理廠商的盜版申訴,但外界對於亞馬遜怠於處理甚至靠盜版牟利的譴責,卻未見停歇。 為解決盜版猖獗的問題,亞馬遜於2019年年初推出了以「零計劃」(Project Zero)為名的免費品牌服務,這項計畫包含了幾個項目,其一是透過機器學習掃描平台中可能的仿冒商品,並依據廠商提供的品牌資料主動移除可疑的盜版項目;其二,提供廠商自行移除仿冒商品的工具,廠商無須向亞馬遜提出申訴即可自行下架盜版商品;第三,透過廠商在商品上放置特殊編碼,讓亞馬遜可以在出貨時就檢驗其是否為正版,以即時遏止盜版商品的送到消費者手中。「零計劃」目前僅提供部分受邀品牌參與,同時,即使亞馬遜宣稱會採取適當檢驗程序,但該計劃是否會賦予大品牌過多權力,壓迫小廠商或二手商品的發展,導致不公平競爭的問題,仍有待觀察。 除「零計劃」之外,今年(2019)年初 亞馬遜也擴大了自2017年開始運作的「透明度」(Transparency)的付費計劃。該計劃的運作,是由亞馬遜給予註冊品牌廠商一個或數個由亞馬遜研發的二維條碼,廠商有責任將其施用在其指定的商品上,以一方面讓亞馬遜在出貨該商品時透過該條碼來驗證商品來源與真實性 ,二方面買家也可透過亞馬遜提供的APP掃描條碼來確認其商品是否為正品(此為零計劃中所未包含的功能)。目前該計劃已在北美、德國、法國、英國、義大利、西班牙與印度等國實施。
德國法蘭克福高等法院判定ISP業者毋須揭露線上音樂下載使用者個人資料法蘭克福地區高等法院2005年1月25日駁回下級法院判決,後者判定一在家中經營非法音樂下載服務之網路使用者,其個人資料應被予以揭露。 高等法院認為,ISP業者僅提供網路接取的技術服務,毋須監測在其網路內傳輸的資料。只有當ISP業者知悉其本身網路傳輸內容涉非法時,始應被要求去攔截該網路接取。 目前德國法界實務已普遍認可是項判決結果,去年慕尼黑地區高等法院亦做出類似裁判。 然類似案件發生在英美者,則有部分ISP業者被判定,須提供網路音樂檔案持續交換者的個人細部資料。英國倫敦高等法院即於2004年一判決中,認定ISP業者應提供網路上使用者非法進行點對點音樂電影檔案傳輸之個人資料。
美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。
日本經產省提出創新政策落實方向由於日本近年研發品質、數量停滯不前,加上企業研發效率亦落後於外國,經濟產業省(簡稱經產省)於2024年6月21日從三個面向提出政策建議,期能打造成功創新模式。重點如下: 1.發揮新創企業與大企業優勢,促進研發投資 由於研發投資具有回收期間長、獲利不確定等特徵,短時內難以看到成效,故為鼓勵企業持續投入研發,經產省擬制定研發投資效率評價指標,並將透過「新創培育五年計畫」(「スタートアップ育成5カ年計画)下之「新創推動框架」(スタートアップ推進枠),將科研預算優先分配予重點項目,以建立友善研發環境。 2.透過新創資源流動,促進商業化和創造附加價值 新創企業初期往往受限於人力、技術和設備等資源不足問題,難以快速成長及擴張。為解決上述問題,經產省擬制定「跨領域學習」指引及案例集,期能促進新創資源流動,打造創新生態系統。 3.以需求為導向之前瞻技術研發 部份具有高度發展潛力之前瞻技術,如量子和核融合等,因研發風險較高且市場需求不明,將由新能源‧產業技術綜合開發機構(新エネルギー・産業技術総合開発機構)、產業技術綜合研究所(產業技術綜合研究所)等法人進行研發。