2009年,馬里蘭州立法通過去氧核醣核酸(下稱DNA)採集法(DNA Collection Act),允許警方向已經被起訴但尚未定讞之犯罪嫌疑人採集DNA樣本,其適用對象主要在於暴力犯罪或一級竊盜案件。對此問題,美國大約有26州立有與馬里蘭州類似的法案,例如維吉尼亞州的執法單位對於暴力犯罪在經過逮捕後即可進行DNA採集。然而,該法案卻引發了隱私權利與公眾安全之平衡的爭論。
此次爭議爆發於Alonzo Jay King Jr. v. State of Maryland案,案件中Alonzo Jay King Jr.在2009年被起訴暴力攻擊,且因此被警方採集DNA,而後又在經過DNA比對之後,發現與2003年一宗強制性交案件所遺留下的DNA樣本符合,並據此判決Alonzo Jay King Jr.強制性交罪。本案經Alonzo Jay King Jr.上訴高等法院後,高等法院認為調查人員採集其基因資料並以之與舊案件進行比對,已經侵犯了美國憲法第四修正案所賦予人民的合理隱私期待,屬於不合法的搜索,並據此判決禁止向犯罪嫌疑人採集DNA樣本。本案目前正在最高法院上訴中,而最高法院首席法官John Roberts日前發布了一份命令,阻止了高等法院判決的生效,並使得馬里蘭州在最高法院作出判決之前仍然能夠採集DNA;全案預計將在10月進行聽證,未來,最高法院將如何判決,值得吾人注意。現行促進產業升級條例第19條之1規定,為鼓勵員工參與公司經營,並分享營運成果,公司員工以其紅利轉作服務產業增資,而取得新發行記名股票,採「面額」課徵所得稅。而依據所得基本稅額條例第12條第1項第5款規定,對於員工「可處分日次日時價」與股票面額之間的差額部分,另計入最低稅負制課稅。 台聯黨團認為現行促產條例第十九條之一關於員工分紅配股以面額課稅規定,使不少高科技產業上市櫃公司,利用促產條例優惠,壓低員工本薪,以分紅配股吸引人才,造成營業成本低列,將薪資費用轉嫁給股東,扭曲財報,使高獲利的高科技產業和薪資紅利豐厚的科技人租稅優惠多繳稅少,造成政府稅收短缺,因而提出修改案,改由「市價的八成」課徵所得稅。立法院 經濟能源委員會初審通過修正促進產業升級條例,將員工分紅配股由「面額」改依「市價八折」課稅,上市櫃公司市價以配股發放日前一個月均價為準,未上市櫃公司則以配股發放日淨值為準,此規定 引發高科技業者反彈,並向經濟部反映。 目前員工分紅改為市價的八成課稅雖通過委員會初審,但提交下次院會討論前,須經朝野協商。經濟部表示,此案初審後尚需經過立法院政黨協商,再交由院會決定。員工分紅配股課稅方式改變,應要有配套才合宜(例如一定之緩衝期間讓業者調整員工薪資結構),若在配套未完成前就做決定,是比較不好的決策。
推動創新採購彈性機制-產業創新條例第27條之增修產業創新條例於106年11月3日經立法院三讀通過部分條文修正草案,以因應國際產業發展趨勢,積極推動產業轉型及創新;其中修正重點之一為第27條之增修-推動創新採購彈性機制,即透過政府採購龐大市場之購買力量,作為產業創新能量發展之拉力。所推動之創新採購彈性機制,其一為以「政策需求」訂定軟體、創新及綠色產品或服務之共通需求;其二為政府機關得以「優先採購」辦理創新及綠色產品或服務。爰本文聚焦於第27條增修重點、創新採購彈性機制之推動,以及本條配套子法即「創新產品或服務優先採購辦法」草案之訂定方向。
日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。