ITU國際電信聯盟秘書長Dr. Hanmasoun I Toure於2012年5月一場在加拿大舉行的無線通訊座談會中,針對之前國際上傳言聯合國與ITU將嘗試介入管理網際網路之說法進行澄清,並主張自1988年修改沿用至今的國際電信規則(ITRs)已不能應付目前新興之電信商業模式。
新型態的電信商業模式引發網路中立爭議的戰火,已延燒多時。從前的網際網路服務供應業者(ISP),主要遵守網際網路協定,扮演好笨水管(Dum Pipe)的角色。但隨著網際網路內容與各類應用服務的急速成長,各類封包的傳輸加重了原有管道的乘載負擔,再加上網際網路管理技術的演進,業者可透過網管技術對資訊封包的傳輸做更細緻的調節,逐漸形成內容傳輸優先次序差異化的新興商業模式,並且持續發展中。
依目前的技術能力,網際網路中任何內容傳輸的速度,皆能透過寬頻管理機制(QoS)進行調節。過去,QoS在國際通訊上,於各國的終端網路中進行調節工作。但現有的封包式的網路傳輸架構(packet-base networks)動搖了原有的秩序,不僅質量參數(quality parameters)大部分未受明確定義,QoS的角色也逐漸模糊。導致各系統本身無法完全控制跨網資訊傳輸的品質,影響各類服務在使用者的終端設備上所呈現的服務品質。對於需與固網或各類終端設備連結的行動通訊業者而言,如何解決這類問題儼然已成了燃眉之急。
目前ITU剛結束於日內瓦的年會,從會中委員會對其文件是否具備國際效力之議題討論,不難看出ITU對於網際網路管理態度已由被動態度轉為積極。未來ITU更期望,藉由年底舉行2012年國際電信世界大會(WCIT-12),重新修訂舊有國際電信規則(ITRs),引領網際網路的新秩序。
美國專利商標局(The United States Patent and Trademark Office,簡稱USPTO)與以色列專利局(The Israel Patent Office,簡稱ILPO)宣布以色列專利局將參與合作專利分類(The Cooperative Classification Patent,以下簡稱CPC)系統。以色列專利局是以色列智慧財產權審查及註冊的主管機關,主要負責智慧財產權如專利、設計、商標的審查、註冊及異議。 CPC已於2013年1月正式啟用。美國專利商標局及歐洲專利局(European Patent Office,簡稱EPO)自2010年10月共同發展一個可用於雙方不同審查程序的相容分類系統,降低工作上不必要的重複作業以強化效率。美國專利商標局局長Michelle K. Lee.表示:「合作專利分類系統了除證明美國專利商標局與以色列專利局良好的關係及合作精神外,更能夠幫助國內外申請專利的創新者與企業。」 美國專利商標局已於2016年7月提供以色列專利局CPC的相關訓練。美國專利商標局及以色列專利局預計進一步著手進行更深入的CPC相關訓練與交流事宜。以色列專利局及美國專利商標局之間的合作正持續擴展當中,並已達到以CPC為以色列專利局所收藏之專利進行分類的目標。以色列專利局局長Asa Kling表示:「隨著新系統的轉變,以色列專利局將強化審查專業及效率,並改善提供給以色列申請人的服務。」
自由軟體運動燒向BIOSBIOS是「基本輸出/輸入系統」(Basic input/output systems)的簡稱,這種在所有應用底層的軟體,過去以來PC廠商一向自我保護相當嚴密,而且還需要用到專門設計BIOS的公司。而現在,一些批評開始希望逼迫業界放棄其機密,這些批評宣稱,客戶應該可以自由發開自己的選擇方案,確保可以控制自己的裝置──也就是說,可以讓他們自由取得BIOS資訊。 「我們需要自由的BIOS,因為如果我們無法控制BIOS,就無法控制電腦。」自由軟體基金會(Free Software Foundation)總裁Richard Stallman表示。BIOS自由軟體計畫開始於BIOS史上的第一波改革──當時軟體程式碼希望轉向新的「可延伸式韌體界面」(Extensible Firmware Interface,或簡稱EFI)。另一方面,PC硬體安全功能的一些計畫也讓Stallman等一類團體批評指出,消費者對於自己的裝置缺乏主控權,希望能夠公開BIOS撰寫規格,可讓消費者能夠自行安裝、修改,及再發佈BIOS軟體──雖然不見得會是免費的。更重要的是,將可讓使用者避開未來一些可能的安全強化功能,例如廠商用控制文件使用方式的數位版權管理功能。 已有許多廠商宣稱,BIOS的自由軟體純粹只是為了自由而自由,對於電腦使用者沒什麼意義。BIOS廠商的高層及晶片巨子英特爾都表示,由於目前業界對BIOS的控管嚴密,也才能夠保有PC的安全和穩定,同時可藉由對一些廠商IP(智慧財產權)的保護以促進市場競爭。有些人則認為,對於BIOS的嚴密保護,有助於防止駭客攻擊。 英特爾則已經提出了折衷的方案──名為Tiano的開放原始碼技術。Tiano是為了取代BIOS的一種框架工作,希望透過EFI,讓PC零件以自己的驅動程式來啟動零件。英特爾的這項計畫為BIOS的汰換工作建立了一個框架,因此可能成為BIOS自由軟體的基礎。但是它把PC零件初始化用的程式碼撰寫工作留給了軟體的下載者。但Stallman依然宣稱英特爾做得不夠,且BIOS廠商其實是多餘的,他希望看到資訊釋出。
Google與Klausner Technologies公司之專利訟訴和解根據路透社(Reuters)報導指出,Google,和日前亦接獲到Klausner Technologies公司之專利訴訟LG, Apple,Skype以同意授權方式,結束可視覺化語音信箱(visual voicemail)之智慧財產權訴訟案。 提出訴訟案為Klausner Technologies公司之CEO,亦為可視覺化語音信箱技術發明人Judah Klausner,其擁有美國、歐洲與亞洲之專利。目前市場上熱門的可觸控式手機具有可視覺化語音信箱特性,包含Apple’s iPhone都具有其功能性。 此案主要涉及Klausner之專利擁有可視覺化語音信箱技術,類似電子郵件,使用者可利用電腦或電話傳送可視覺化之語音訊息,並讓使用者具選擇性收取訊息。 目前Google擁有兩種服務,受Klausner’s專利之影響,其一讓使用者透過Grand Central提供一簡單網際網路語音溝通平台,另一為具Android自由軟體平台之智慧型手機。該案以和解方式結束,但Klausner婉拒與路透社說明,該公司與Google之間協議內容。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現