美國能源效率標準的制定,是依據「能源政策管理法」(The Energy Policy and Conservation Act, EPCA)之規定,授權美國能源部針對設備產品制訂能源效率標準;後因「2007年能源獨立與安全法」(The Energy Independence and Security Act (EI SA) of 2007)修正EPCA之部分內容,要求能源部秘書長(Secretary of Energy)檢視是否需修正相關設備產品之能源效率標準後,再進行修正,同時並應將待機(standby mode)及關機(off mode)之能源耗用標準納入測試程序中。
基於此,能源部於2012年5月,針對住宅洗衣機及洗碗機,公布新的能源效率標準,訂立洗衣機及洗碗機產品的最低能源標準,並分別自2015年及2013年開始施行。此亦為美國總統歐巴馬「all-of-the-above」能源政策的重要部分,透過能源效率標準的制訂,以合理的方式逐步減少家庭的支出並同時減少能源消費。
目前美國家庭洗衣機及洗碗機的用電量約占住宅用電量的3%,用水量則占室內用水的20%。根據新的標準,前置式洗衣機(front-loading clothes washers)將可節省15%的電力消費以及35%的水費,上置式(top-loading washers)洗衣機更可節省33%的電力使用及19%的用水量。洗碗機則可節省約15%的電力及20%的用水。
自2009年起至今,已有約40種產品訂有能源效率標準,預計至2030年,總共可節省約3500億美元的帳單花費。這些標準的制訂,是透過能源部的「能源效率與再生能源」(Energy Efficiency and Renewable Energy (EERE) Program)計畫提供技術面的相關建議,並與製造商、消費者團體及環保團體等的共同協商,達成一致的共識,希望提供消費者更多的選擇並減少對製造者的衝擊。
在俄亥俄州長於2016年6月18日簽署通過HB523法案後,俄亥俄州正式成為美國第25個將醫療用大麻合法化的州。這項法案將在今年11月生效,並且允許重症患者使用及採買醫療用大麻。 與原本在2015年11月被退回的法案相比,娛樂性用途大麻直接被排除在本次法案適用範圍外,而且不允許個人在家裡種植或是直接抽食。因此,與一般人想像中,如同荷蘭般的大麻合法化政策相當不同。 當然,某種層面上來說,這項法案對重症病患是一大福音,他們可以合法取得大麻,不再因為持有大麻而被當成罪犯。但是俄亥俄州這部法案對於大麻使用者於現實生活中情況能帶來多大的改善,仍讓人懷疑。因為在俄亥俄州現行法律及行政系統下,俄亥俄州政府並未隨著新的法案,推行相關行政措施。一般來說,在大麻合法化之區域,通常會要求雇主不得禁止員工使用與持有醫療用大麻,或是不可以因當事人有使用、持有或散佈醫療用大麻之紀錄或習慣,而拒絕錄用或是解聘之,同時,會禁止對員工施行藥物檢查。倘若雇主有前列之行為,通常會面臨處罰,例如:主管機關會取消該名雇主原先所享有之稅捐優惠或其他惠優措施。此外,員工得因雇主反禁藥之行為,對雇主提起訴訟。是以,在缺乏相關行政配套措施的情況下,俄亥俄州的大麻使用者未來在工作場所中,仍將會面臨許多挑戰以及障礙。 總而言之,俄亥俄州通過這部法案,在法律上可謂是一大里程碑,但尚與一般大眾認知的「大麻合法化」仍存有很大的差距。同時,未在行政作為上採取相對應的保障措施,仍可以想像將來醫療用大麻使用者在社會上仍將面臨許多障礙。
美國勞工部發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」文件,要為雇主和員工創造雙贏.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國勞工部(Department of Labor)於2024年10月發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」(Artificial Intelligence and Worker Well-Being: Principles and Best Practices for Developers and Employers)參考文件(下稱本文件)。本文件係勞工部回應拜登總統2023年在其《AI安全行政命令》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)中對勞工的承諾,作為行政命令中承諾的一部分,本文件為開發人員和雇主制定如何利用人工智慧技術開展業務的路線圖,同時確保勞工可從人工智慧創造的新機會中受益,並免受其潛在危害。 本文件以八項AI原則為基礎,提出最佳實踐作法,其重點如下。 1. 賦予勞工參與權(empowering workers):開發人員和雇主履行各項原則時,應該秉持「賦予勞工參與權」的精神,並且將勞工的經驗與意見納入AI系統整個生命週期各環節的活動中。 2. 以合乎倫理的方式開發AI系統:開發人員應為AI系統建立標準,以利進行AI系統影響評估與稽核,保護勞工安全及權益,確保AI系統性能符合預期。 3. 建立AI治理和人類監督:組織應有明確的治理計畫,包括對AI系統的人類監督機制與定期評估流程。 4. 確保AI使用透明:雇主應事先告知員工或求職者關於AI系統之使用、使用目的及可能影響。雇主及開發人員應共同確保以清晰易懂的方式公開說明AI系統將如何蒐集、儲存及使用勞工的個資。 5. 保護勞工和就業權利:雇主使用AI系統時,除應保障其健康與安全外,不得侵犯或損害勞工的組織權、法定工資和工時等權利。 6. 使用AI以提升勞工技能(Enable Workers):雇主應先了解AI系統如何協助勞工提高工作品質、所需技能、工作機會和風險,再決定採用AI系統。 7. 支援受AI影響的勞工:雇主應為受AI影響的勞工提供AI技能和其他職能培訓,必要時應提供組織內的其它工作機會。 8. 負責任使用勞工個資:開發人員和雇主應盡責保護和處理AI系統所蒐集、使用的勞工個資。
美國最高法院認定州政府得對電商業者課徵銷售稅美國最高法院在今(2018)年1月12日決定接受南達科塔州的上訴,就South Dakota v. Wayfair一案(下稱Wayfair案)進行審理,以決定州政府是否有權對網路零售業者課徵銷售稅。依據最高法院在1992年Quill v. North Dakota (下稱Quill案)所確立之原則,若網路零售商在該州無實體呈現 (physical presence),州政府即不得對該零售商向該州居民所銷售之貨物課徵銷售稅。 在1992年Quill案中,最高法院認為州政府對於遠距零售者(remote retailer)課稅,將違反潛在商務條款(dormant commerce clause),理由是對於無具體呈現的零售商課稅,將使其面對許多不同的課稅管轄權,造成零售商巨大的負擔,並增加州際商務的複雜性。南達科塔州認為科技的進步已使得零售商商所面臨課稅的複雜度降低,故在2016年通過法案對無實體呈現之電商業者課稅,因而引發相關爭訟。 本案在今年6月21日宣判由南達科塔州勝訴,判決指出隨著電子商務的成長及資訊科技的進步,課稅並不如過往會對業者造成具大的負擔,同時也可滿足正當程序與潛在商務條款的要求;此外,Quill案將會造成市場的扭曲,其所造成的稅捐保護傘將對具有實體呈現的業者造成不公平的競爭。因此認定Quill案已難以適用於現在的電子商務市場。 但本案仍有四位大法官反對,認為應由國會立法來糾正此一錯誤。因為國會並未明確授權州政府可對跨州零售交易課稅,因此才有潛在商務條款的適用,換言之,國會實際擁有立法授與各州徵收遠距交易之權力,在115期國會當中,也已經有相關的法案被提出,包括Remote Transaction Parity Act of 2017 (H.R. 2193)、Marketplace Fairness Act of 2017 (S.976)。在最高法院完成此一判決後,後續可繼續觀察美國國會是否會以立法的方式,授與州政府對跨州商業貿易課徵租稅。
美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。