英國內政部於2012年6月提出「通訊資料法」之草案(Draft Communications Data Bill),並將於10月舉行公聽會討論。
所謂通訊資料,非指通訊內容本身之資料,而係指通訊過程中所留下的相關紀錄性資料,包括通訊帳號所有人之資料、通訊之時間、長度、來源、位置等。而目前蒐集通訊資料之用途,多半為犯罪之偵防、避免緊急危難或反恐怖活動。其所牽涉之議題重點則為向提供通訊服務之公司調閱相關資料時,該公司是否有提供之義務,及調閱機關是否有相關權限或對資料之應用是否符合調閱之目的。
此次所提出之草案,主要可分為三大部分:第一部分賦予公務機關調閱資料之權限,並規定使用該等資料過程中,相關的安全保護措施與法定程序要求。第二部分規定調閱資料所必須的法定審查流程,包括主管機關內具備權限的高階主管,應依據比例原則,決定是否可調閱資料,並在一定情況下,須經司法機關審查。另外,國務大臣應建立一定審查機制,審核各主管機關之調閱目的與調閱程序恰當與否。最後,第三部分則是有關提升審查制度運作可能性之規定,諸如明訂各個機關所享有之調閱權,以及提供郵務及電信業務經營者相當之資源以配合機關調閱資料之需求。
日本經濟產業省2022年4月8日公布「協調性資料加值運用之資料管理框架-透過確保資料可信度創造資料價值之新路徑」(協調的なデータ利活用に向けたデータマネジメント・フレームワーク~データによる価値創造の信頼性確保に向けた新たなアプローチ),提示確保資料可信度之方法。經濟產業省於2019年7月31日設立「第3層︰網路空間信賴性確保之安全對策檢討工作小組」(『第3層:サイバー空間におけるつながり』の信頼性確保に向けたセキュリティ対策検討タスクフォース」,以下簡稱工作小組),討論確保資料可信度之要件,以利資料在網路空間內自由流通,並藉由資料創造出新的附加價值。 工作小組為確保資料可信度,首先定義資料管理為「將資料屬性依據其所涉之法令或組織規章,以及因蒐集、處理、利用、移轉等活動而改變之過程,視為一個生命週期加以管理」,並認為資料管理會受到屬性(資料性質,如內容、揭露範圍、利用目的、資料管理主體、資料權利者等)、場域(針對資料之特定規範,如各國、地區法令、組織內部規定、組織間契約等)及事件(產生、改變及維持資料屬性之事件,如生產、蒐集、處理、移轉、提供、儲存、刪除)等三大要素影響,並據此建立資料管理模型。 工作小組期待藉由上述三大要素,依序透過讓資料處理流程(事件)處於容易被觀察的狀態、整理所涉及之相關規範(場域),以及判斷資料屬性等步驟,讓利害關係人之間可更容易進行資料共享及資料治理。
美國針對政府雲端運算應用之資訊安全與認可評估提案為建構政府雲發展的妥適環境,美國於今年度啟動「聯邦風險與認可管理計畫」(Federal Risk and Authorization Management Program, FedRAMP),由國家技術標準局(National Institute of Standards and Technology, NIST)、公共服務行政部(General Service Administration)、資訊長聯席會(CIO Council)及其他關連私部門團體、NGO及學者代表共同組成的跨部會團隊,針對外部服務提供者提供政府部門IT共享的情形,建構一個共同授權與持續監督機制。在歷經18個月的討論後,於今(2010)年11月提出「政府雲端資訊安全與認可評估」提案(Proposed Security Assessment & Authorization for U.S Government Cloud Computing),現正公開徵詢公眾意見。 在FedRAMP計畫中,首欲解決公部門應用雲端運算所衍伸的安全性認可問題,因此,其將研議出一套跨部門共通性風險管理程序。尤其是公部門導入雲端應用服務,終究會歸結到委外服務的管理,因此本計劃的進行,是希望能夠讓各部門透過一個機制,無論在雲端運算的應用及外部服務提供之衡量上,皆能依循跨機關的共通資訊安全評定流程,使聯邦資訊安全要求能夠協調應用,並強化風險管理及逐步達成效率化以節省管理成本。 而在上述「政府雲端資訊安全與認可評估」文件中,可分為三個重要範疇。在雲端運算安全資訊安全基準的部份,主要是以NIST Special Publication 800-535中的資訊安全控制項作為基礎;並依據資訊系統所處理、儲存與傳輸的聯邦資訊的敏感性與重要性,區分影響等級。另一部份,則著重在持續性的系統監控,主要是判定所部署的資訊安全控制,能否在不斷變動的環境中持續有效運作。最後,則是針對聯邦資訊共享架構,出示模範管理模式、方策與責任分配體系。
英國數位、文化、媒體暨體育部公布「家用智慧裝置消費者指引」英國數位、文化、媒體暨體育部於2018年10月14日公布「家用智慧裝置消費者指引」(Consumer guidance for smart devices in the home)。該指引之目的係因應家用之智慧及聯網設備(例如:智慧電視、音樂播放器、聯網玩具或智慧廚房等)日益普及,以及可能發生之侵害消費者個人資料之風險。 本指引提出以下方向,供消費者參考: 一. 智慧裝置之設定 (一) 應閱讀與遵循智慧設備之設定指示。 (二) 確認設備指示是否要求使用者須至製造商網站設定帳號。 (三) 若所設備預設之密碼過於簡單(例如,0000),則應更換成較複雜之密碼。 二. 帳號管理 (一) 確保密碼複雜性。 (二) 若設備提供雙重驗證功能,消費者應使用之。 (三) 特定產品可能提供遠端存取功能,消費者應於不再家時考慮將該功能關閉。 三. 持續更新應用軟體與Apps (一) 消費者應檢查其設備是否可設定自動更新。 (二) 應安裝最新版本的軟體與Apps。 四. 若接到資安事件之通知,應採取行動 (一) 於接到資安事件通知後,應訪問製造商網站以確認其是否提供後續因應措施等資訊。 (二) 定時確認國家安全網路中心以及資訊保護委員會辦公室網站是否公布相關網路安全指引。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。