澳洲證券投資委員會(Australian Securities and Investments Commission, ASIC) 於2016年12月15日發布第257號法規指導(Regulatory Guide 257,RG 257)-在未持有AFS或信用執照的狀態下測試fintech產品與服務(Testing fintech products and services without holding an AFS or credit licence)。RG 257並包含澳洲的監理沙盒架構。重要內容如下: 1.有別於其他國家的監理沙盒需要申請方能適用,透過法規以及ASIC澳洲已經提供一些鬆綁機制,換句話說並不需要事先申請就可以取得監管沙盒鬆綁。例如非現金支付產品,包含儲值卡,以及某些國外交易服務。 2.ASIC的fintech 執照豁免見諸於ASIC Corporations (Concept Validation Licensing Exemption) Instrument 2016/1175 以及ASIC Credit (Concept Validation Licensing Exemption) Instrument 2016/1176。 3.ASIC也可個別提供客製化的執照豁免以促進產品或服務測試,個別豁免就比較接近其他國家的監管沙盒架構。 因此基本上,只要符合法定以及上述兩個instruments的規定,就可以自動取得監管沙盒的鬆綁,而無需另外申請,唯需「通知」ASIC,並提供相關資料。監理沙盒的適用期間為十二個月。但是如果不符法定以及Instrument 2016/1175、Instrument 2016/1176的規定,也可以另外向ASIC申請客製化的豁免。 目前可適用Instrument 2016/1175的金融服務包含: •掛牌的澳洲證券; •簡易管理的投資架構; •存款產品; •某些一般的保險商品;以及 •「授權存款取用機構(authorised deposit-taking institutions,ADIs)」發行的支付產品。 唯須注意的是,Instrument 2016/1176允許有限的信用協助,但是不得提供借貸。另外,使用監理沙盒的fintech企業最多只能有100個零售客戶,以有效控制風險。
日本經產省公布「伊藤報告3.0版」和「價值協創指南2.0版」,強調企業永續發展重要性日本經濟產業省於2022年8月31日公布「伊藤報告3.0版」(伊藤レポート3.0)和「為協力創造價值之綜合揭露、對話指南2.0版」(価値協創のための統合的開示・対話ガイダンス2.0,簡稱價值協創指南),強調企業永續轉型重要性。所謂永續轉型,係指社會永續發展與企業永續發展必須「同步」,及企業為此需要在經營面和產業面進行之改革。 「伊藤報告3.0版」整理企業推動永續轉型應採取之措施,包括必須根據社會永續性擘畫未來方向,並制定可實現長期價值之企業戰略、關鍵績效指標(Key Performance Indicators, KPI)、治理目標等。此外,伊藤報告也指出供應鏈全體(包含中堅、中小企業和新創企業等)和投資鏈上之參與者,都需要推動企業永續轉型。 為強化企業經營以實現永續轉型,經濟產業省同步修正「價值協創指南2.0版」,調整企業資訊揭露及對話方式,讓過程可以更有效率及建設性。指南修正重點包括:(1)全部項目都強調為實現永續社會,企業長期且持續提供價值的重要性及因應方向;(2)新設長期戰略項目;(3)確保「氣候相關財務揭露(Task Force on Climate-related Financial Disclosures, TCFD)」所提出之治理、戰略、風險管理、指標與目標之揭露架構與整合性;(4)於項目「實施戰略(中期經營戰略等)」中,強調人才戰略和人才投資重要性;(5)新設實質對話、約定項目。
日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國Ofcom公佈感知無線電技術之諮詢結論英國Ofcom於2011年9月1日公佈了關於閒置頻譜、地理定位(geolocation)資料庫與感知無線電的最新諮詢結論,本次行動使英國成為歐盟中第一個宣佈感知無線電發展計畫的國家。 Ofcom自2005年「數位紅利審查報告書」(Digital Dividend Review)以來,藉多次的聲明與諮詢確立數位紅利閒置頻譜使用的三大方向: 其一,將用於enhanced Wi-Fi,相較於當前使用2.4G的Wi-Fi技術,透過原本無線電視所使用的低頻段(介於470至790MHz間)特性,可使新技術的涵蓋範圍更廣、建築穿透力更強。 其二,透過無線傳輸連結大城市與鄉村地區,以建置鄉村地區之寬頻網路。 其三、用以智慧聯網(Machine-to-Machine Communications,或譯為物聯網)。 由於相關議題在歐盟仍屬初始階段,Ofcom決定先行發展國內和諧使用設備之標準,待歐盟確立標準後,再調整規管與之一致。 有意願經營資料庫之第三方,皆須向Ofcom申請其管理、或交由可信任機構管理之網站的清單,以供感知無線電設備選擇,導入資料庫供應商之競爭。Ofcom將與複數之資料庫供應商簽訂契約或管制協議;至於申請者的最低條件、契約內容與申請費用,仍待定義與諮詢 Ofcom預計於2013年正式使用該技術;此外,依據科技進展,亦考慮回收FM廣播頻段發展感知無線電。