營業秘密管理概要

刊登期別
第24卷,第6期,2012年06月
 

※ 營業秘密管理概要, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5860&no=55&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
日本通過《減少食品損耗促進法》

  隨著地球人口增加,糧食問題日益嚴重,而土地資源有限及氣候變遷也影響著產量。除了開源—提升糧食產量之外,如何節流—減少糧食浪費,也成為各國重要課題。日本為因應聯合國永續發展目標(SDGs)中的具體目標12.3:「在2030年之前,達到減少生產供應鏈糧食損失,同時掌握消費端食物浪費流向。」並改善國內食物大量損耗的問題,參議院於2019年5月24日表決通過由跨黨派議員聯盟提出的《減少食品損耗促進法》(食品ロス削減推進法)。有鑑於日本的循環型社會法制體系中,已有以實現食品環保3R(Reduce, Reuse, Recycle)為目的之《食品循環利用法》(食品リサイクル法),《減少食品損耗促進法》要求中央及地方政府在依既有相關法規,實施食品廢棄物減量時,也應考量本法之目的和內容,適當地推行措施。   《減少食品損耗促進法》將「減少食品損耗」定義為:「防止仍能食用的食品不被廢棄之社會性措施。」並定義「食品」 係除《醫藥品、醫療機器等法》第2條第1項所稱之「藥品」、同條第2項所稱之「醫藥部外品」及同條第9項所稱之「再生醫療等製品」以外之飲品及食物。   依《減少食品損耗促進法》之規定,未來內閣府將設立名為「減少食品損耗促進會議」(食品ロス削減推進会議)之專責機關,制定減少食品損耗的基本方針,並審議相關重要事項及推動政策之實施,而地方政府也應努力制定具體的相關促進計畫。本法也鼓勵企業與中央和地方政府合作,積極減少食物廢棄物,同時希望消費者自主採取行動。「減少食品損耗」作為從食品的生產到消費各階段的重要目標, 將成為新的全民運動。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

美國法院將考慮命Google提交相關資料

  美國布希政府為捍衛1998兒童線上保護法(1998 Child Online Protection Act),要求法院命Google提交有關民眾使用該公司之搜尋引擎所輸入之關鍵字資料,以證明透過搜尋引擎,兒童使用電腦連結到色情網站並非不易。但是,Google主張此將會危及其使用者個人的隱私以及其營業秘密。   一名負責審理此案的法官於日前表示,其將會考量政府蒐集此等資料的需求以及Google之使用者的隱私保護議題,且其可能會允許司法部 (Justice Department) 可以接近使用 (access) 一部分由Google所建立的網站連結目錄,但並不是Google使用者所輸入的關鍵字資料。

發展再生能源 農委會推展生質能源作物

  管制全球溫室氣體排放量的京都議定書生效,發展再生能源成為趨勢。行政院農業委員會投入生質能源作物開發,規劃利用北、中、南三地共九十公頃的休耕農田,種植向日葵、大豆及油菜等三種油料能源作物,研發生質柴油,期盼提高農業「綠色產值」。   農委會指出,農業部門在再生能源領域中也有發揮空間,國內外生質能源相關研究認為可利用植物將太陽能、水力及二氧化碳轉化為生質能源,台灣每年有不少農地休耕,可利用推展能源作物,發展生質能源,同時提升休耕農田的附加價值,開創台灣農業發展新契機。   農委會官員指出,研究發現這些作物製成的生質柴油使用於汽車與一般柴油相同,而且排放的廢氣、二氧化碳較少,不過,生質油成本較柴油高,相關技術尚待進一步研究。

TOP