歐盟於2016年4月19日公布數位單一市場下ICT標準化優先發展項目(ICT Standardisation Priorities for the Digital Single Market),包括:5G通訊、雲端運算、智慧聯網、巨量資料技術、以及網路安全等,作為目前數位單一市場發展的基礎。相關影響產業包含:智慧健康、智慧能源、智慧運輸系統、電動車、智慧家居、以及智慧城市等。其三大主軸依次說明如下: 1. ICT標準建立為數位單一市場發展核心 歐盟將依1025/2012規則為基礎,進行標準化建立,因此將聚焦在數位單一市場需要發展的核心技術領域,優先進行標準訂定。 2. 因應全球技術變遷發展 ICT標準發展主要仍以產業為導向,且由產業自願性採納,建立之原則包括應具備透明性、開放、公平與一致性、有效與連結性等,此同時也能促成歐洲創新能量之發展。 3.以雙主軸計畫優先發展ICT標準設立 (1)首先歐盟執委會將確認數位單一市場優先發展之五項領域,並且設立發展時程。 (2)針對上述的優先發展領域,歐盟將進行施行檢視以及相關細項。 在5G通訊部分,預計將透過5G公私協力合作發展,同時以目前產業的需求為發展導向;在雲端運算方面,歐盟將以資金補助方式,促進雲端應用的互通性與易取性發展,並且支持企業,尤其在中小企業部分,以服務層級協議為基礎,協助採用雲端運算服務;在智慧聯網發展部分,主要為發展技術、介面、Open API等,建立準則,並預計將智慧聯網標準納入成為政府採購項目之一;在網路安全性部分,在上述發展技術領域當中,資料安全與隱私保護為核心議題,因此除了透過公司協力方式發展安全技術以外,同時也鼓勵業者應該設計著手保護隱私等概念優先納入技術之中;關於巨量資料技術部分,包括跨部門技術整合、資料與後設資料有更佳的互通性。此外,尚包括資料與軟體基礎設施服務,提供科學資料的交換、執行資料管理計畫、品質驗證、信賴性與透明性等原則。 最後,在可能受影響之產業方面,以智慧健康發展為例,智慧健康必須符合病人預期要求,如病人安全維護以及達到更佳的健康照護體系。因此,互通性的標準為當中關鍵的角色,未來亦有助於發展各國之間跨境醫療照護實踐。在電子病歷交換方面,從病人病歷摘要、電子處方簽等等,在符合個資保護條件之下,建立互通性標準可使疾病的治療更為完善。歐盟未來將持續鼓勵各會員國之間標準互通性之發展,包含目前行動健康應用程式的使用,以及未來遠距醫療應用。後續,歐盟將從2016年開始至2017年,持續針對標準建立進行討論會議,預計以資金費用補助以及其他政策方式輔導發展,同時也在2016年6月提出規劃說明使歐盟標準化政策發展符合現代化。
美國國會議員提出「網路盾」草案美國民主黨議員Ed Markey於2019年10月22日提出2019年「網路盾」草案(Cyber Shield Act of 2019),將設立委員會以建立美國物聯網網路安全標準。 雖由參議員MarkWarner所提出之2019年物聯網網路安全促進法(Internet of Things Cybersecurity Improvement Act of 2019)已通過並施行,惟該法僅適用於聯邦政府機構之設備採購。而「網路盾」草案之目的則係設立委員會並建立美國物聯網設備認證標章。依據該草案第3條,於該法通過並經總統簽署後90天內,美國國務卿必須建立網路盾諮詢委員會,該委員會之任務為擬定並建立美國網路盾標章。 另依據該草案第4條,物聯網產品之自願性認證程序與認證標章,內容必須符合特定產業之網路安全與資料保護標準。該標章應為數位標章,並標示於產品之上,且可劃分數個等級,以表彰其符合產業所需求之網路安全與資料安全等級。而針對標章之內容,該法要求美國國務卿於法律通過90天內應建立諮詢相關利益團體之程序,以確保其充分符合產業需求與利益。美國國務卿與各聯邦主管機關亦須合作以持續維護網路安全與資料安全標章之運作,且確保獲得該標章之產品,其資安與資料保護品質均優於未受認證之產品。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
澳洲發布《人工智慧臨床應用指引》提供臨床照護之人工智慧使用合規框架澳洲醫療安全與品質委員會(Australian Commission on Safety and Quality in Health Care, ACSQHC)與衛生、身心障礙及高齡照護部(Department of Health, Disability and Ageing)聯合於2025年8月發布《人工智慧臨床應用指引》(AI Clinical Use Guide),旨在協助醫療人員於臨床情境中安全、負責任使用人工智慧(Artificial Intelligence, AI)。該文件回應近年生成式AI與機器學習快速導入醫療現場,卻伴隨證據不足、風險升高的治理挑戰,試圖在促進創新與確保病人安全之間建立清楚的合規框架。 該指引以臨床流程為核心,將AI使用區分為「使用前、使用中、使用後」三個階段,強調醫療人員須理解AI工具的預期用途、證據基礎與風險限制,並對所有AI產出負最終專業責任。文件特別指出,當AI工具用於診斷、治療、預測或臨床決策支持時,可能構成醫療器材,須符合澳洲醫療用品管理管理局(Therapeutic Goods Administration, TGA)的相關法規要求。 在風險治理方面,該指引明確區分規則式AI、機器學習與生成式AI,指出後兩者因輸出不確定性、資料偏誤與自動化偏誤風險較高,臨床人員不得過度依賴系統建議,仍須以專業判斷為核心。同時,文件要求醫療機構建立AI治理與監督機制,持續監測效能、偏誤與病安事件,並於必要時通報TGA或隱私主管機關。 在病人權益與隱私保護方面,指引強調知情同意與透明揭露,醫療人員須向病人說明AI使用目的、潛在風險及替代方案,並遵循《1998年隱私法》(Privacy Act 1988)對個人健康資料儲存與跨境處理的限制。澳洲此次發布之臨床AI指引,展現以臨床責任為核心、結合法規遵循與風險管理的治理取向,為各國醫療體系導入AI提供具體且可操作的合規參考。 表1 人工智慧臨床應用指引合規流程 使用前 使用中 使用後 1.界定用途與風險。 2.檢視證據與合規。 3.完備治理與告知。 1.AI輔助決策。 2.即時審查修正。 3.維持溝通透明。 1.持續監測效能。 2.標示可追溯性。 3.通報與再評估。 資料來源:AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE [ACSQHC], AI Clinical Use Guide (2025).