英國支持一項由智慧財產權組織(World Intellectual Property Organization/WIPO)草擬的廣電協議(Treaty on the Protection of Broadcasting Organizations),引起一陣反對聲浪。反對者聲稱,這無疑是送給大財團一項操控媒體內容製作的新權利。
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。
為促進健康資通訊科技之創新,美國嘗試立法重新定義健康軟體美國參議院認為健康資通訊科技(Healthy Information Technology)的創新與快速發展已經漸使現行法制不合時宜,美國食品藥物管理局(The US Food and Drug Administration)過度嚴格管制健康資通訊科技產品,甚至以法律強加健康資通訊業者不必要的負擔,恐抹殺新產業的創新能量,因此有必要對相關管制法規予以鬆綁。遂立法提案重新定義健康相關軟體,稱為「防止過度規範以促進照護科技法案」(The Prevent Regulatory Overreach To Enhance Care Technology Act of 2014,以下簡稱PROTECT Act)。 健康資通訊科技是目前創新與發展最快的美國產業。單以健康資通訊科技產業中,與健康相關的手機應用程式(application,APP)之開發,在全球經濟已創造數億美金的產值,在美國一地更提供了將近50萬份的工作機會。然而,在現行法制中食品藥物管理局認為健康相關的手機應用程式等軟體被廣泛應用於醫療行為的資訊蒐集,因此應當被視為醫療行為的一環。依據聯邦食品藥物及化妝品法(TheFederal Food, Drug and Cosmetic Act,FD&C Act)之規定,健康資通訊科技產品被界定為醫療器材(Medical Devices),而健康管理APP、行事曆APP、健康紀錄電子軟體等低風險產品亦包含在內,都必須嚴格遵守醫療器材相關行政管制。在PROTECT Act中將風險較低的健康資通訊科技產品重新定義為臨床軟體(Clinic Software)與健康軟體(Healthy Software)兩種態樣,其共通點在於明白區分出單純提供市場使用,不影響人體或動物醫療的健康資訊蒐集與直接提供實際臨床診斷,如放射線影像或醫療器材軟件的差異,PROTECT Act所定義之臨床軟體與健康軟體即屬於前者,故排除適用FD&C Act中醫療器材之定義範圍,得免除相關行政管制。
韓國金融服務委員會發佈防止金融機構再度發生個人資料外洩之要求韓國於今年1月份爆發史上規模最大的個資外洩案,國民銀行執行長李健浩、國民銀行信用卡公司執行長沈在吾、樂天信用卡公司執行長朴相勳與農協銀行信用卡公司執行長孫京植等人,亦因此請辭以示負責。 為防止將來金融機構再次發生個人資料外洩等事件,韓國金融服務委員會(Financial Services Commission, FSC)與相關部會於3月份發佈一連串要求,以下為其基本原則 1. 金融機構將被要求在處理客戶的個人資料時的每一個階段,包括蒐集、保存、使用和銷毀客戶資料時,都必須擔負起更多的責任。 2. 確保金融消費者可主張關於其個人資料之相關權利,包括金融消費者可決定金融機構於何時如何使用其個人資料。 3. 提升金融機構對於其客戶之個人資料保護責任,包括提升首席資訊安全官(Chief Information Security Officer, CISO)獨立性與責任、加重金融機構於資訊安全違規時相關罰則。 4. 政府將採取更多措施以確保金融機構的網路安全。 5. 金融機構必須建立緊急應變機制,以確保面對未來可能的資料外洩事故時,可迅速有效的應對。 韓國政府於於3月底已對不需修改法律之部分開始執行,而涉及《使用和保護信用資料法》和《電子金融交易法》部分亦待議會修法。
國際能源總署發布電力市場設計報告,提供批發電力市場監管制度政策建議國際能源總署(International Energy Agency, IEA)於2025年11月26日發布《電力市場設計:深化既有優勢、補足制度缺口(Electricity Market Design:Building on strengths, addressing gaps)》報告(下稱電力市場設計報告),旨在提供批發電力市場監管制度之政策建議,並深入分析短期、中長期及配套機制等(Complementary Mechanisms)電力市場型態。 IEA指出,世界各國批發市場價格波動,已達到2019年的5至9倍,而歐洲則因自2021年後,批發電價較2019年上升超過4倍,促使當局採取緊急措施以抑制電價上漲,凸顯出具韌性、效率的電力市場的重要性。 根據電力市場設計報告分析,在短期市場(日間、日前和即時市場)方面,歐洲部分地區、美國、澳洲與日本電力市場中,過去5年電力可靠度超過 99.9%。短期市場促成了高效率的排程、透明的價格形成機制,並讓多元資源與各類參與者廣泛參與。 然而,隨著能源變動性與去中心化的程度提高,IEA建議,短期市場應進一步釋放電力彈性並強化協調功能,伴隨天候變化的再生能源滲透率增加,以更細緻的時間與空間粒度(granularity)反映實際情況,將日前市場的時間間隔縮短至15分鐘或更短,並將大型投標區域劃分為較小的區塊,以反映電網的實際負載狀況。 至於長期市場方面,泰半並未回應日益增加的投資需求與不確定性風險,市場參與者可用的風險管理工具有限;而購售電合約(Power Purchase Agreements, PPAs)在長期市場薄弱的情況下,澳洲、日本、歐洲與美國等國,約有半數至75%的CPPA係由年營收超過10億美元的公司簽署,較小型參與者的採用程度有限。特別是「隨發隨付型」(pay-as-produced)的PPA亦可能與短期市場訊號不相匹配,影響市場參與者的判斷。因此,僅憑PPA本身,無法完全取代運作良好的長期市場所應發揮的功能。 因此,IEA進一步建議,引入「政府或公共信用擔保機制」(public credit guarantees)以降低信用門檻,或是設立可採購長期合約並提供買家短期合約轉售電力的中央機構(central entity that contracts long term and resells shorter-term contracts to buyers);而在市場配套機制方面(包含躉購費率、差價合約等),必須與短期和長期市場緊密協調,以避免產生非預期的負面效果。設計不佳的機制可能削弱價格信號、增加系統成本並製造不確定性。