韓國著作權法施行令於今年(2012)4月12日修正,10月13日施行,其中值得注意的地方就是簡化「孤兒著作法定授權程序」,目的就是要改善孤兒著作授權,耗時過長的問題。在韓國,一般來說,取得孤兒著作授權要花2個月以上時間,而且對申請人而言,最困難的地方在於要證明已盡一切努力搜尋權利人未果,所以過去10年(2001~2011)內,只有37件孤兒著作獲得授權。
韓國孤兒著作法定授權程序之簡化內容為:除申請人可自行證明已盡相當努力外,政府可代為證明已盡相當努力,亦即只要符合「查詢著作權登記簿」、「查詢著作權集體管理團體之權利資訊目錄」、「著作在『尋找權利人資訊系統』公告3個月以上」等法定要件,即可認定已盡相當努力,直接准予授權使用孤兒著作。其目的主要就是要增進使用孤兒著作的便利性。
前述之「尋找權利人網站」:www.findcopyright.or.kr,係由韓國著作權委員會建置,申請人亦可在網站上申請孤兒著作授權。手續費每件1萬韓圜(相當於新台幣287.9元)。
莫德納公司(Moderna)於2022年8月26日對輝瑞(Pfizer)/BNT公司提出專利侵權訴訟,主張輝瑞之Comirnaty疫苗侵害其RNA平台技術,引發各界關注,因此舉不僅為兩大COVID-19疫苗藥廠之間之專利戰爭,同時可能引發莫德納違反其專利承諾(Patent Pledge)之疑慮,從而衍生專利承諾效力問題之爭議。 莫德納曾於2020年10月8日於該公司官網上自願承諾:「於大流行繼續的同時,莫德納不會針對那些旨在製造對抗大流行疫苗的公司,主張我們與COVID-19相關之專利」(第一次專利承諾),而後於2022年3月7日,莫德納更改其承諾(第二次專利承諾),永遠不會針對在Gavi COVAX預先市場承諾(Advance Market Commitment, AMC)中之92個中低收入國家、或為這些國家生產疫苗之公司主張莫德納之COVID-19疫苗專利,且前提是生產之疫苗僅用於AMC之92個國家。莫德納對於輝瑞侵權訴訟之聲明亦與更新後之承諾一致,其僅請求2022年3月8日後輝瑞COVID-19疫苗侵害莫德納專利之損害賠償,而未請求2022年3月7日前之損害賠償責任。 惟莫德納單方面更改其專利承諾並提起訴訟之行為仍引發眾多爭議,主要包括莫德納第一次專利承諾是否有法律上之拘束力、後續更改其專利承諾之行為是否有效、這些行為之影響為何等問題。就第一次專利承諾而言,目前有認為其具有法律上之拘束力,其可能可被視為一種「公共授權」(public license)行為,為專利權之書面授權且適用於任何希望接受授權者;退步言之,即使該授權未成立,莫德納基於「承諾禁反言」(promissory estoppel)之法理,亦不能隨意撤回該承諾或追溯撤銷其已授予之權利;且由於第一次承諾中所述之「大流行繼續(while the pandemic continues)」之條件在世界衛生組織未宣告疫情結束之前仍然存續,該承諾應仍繼續有效。惟亦有認為莫德納應得以第二次專利承諾可取代第一次專利承諾,而自2022年3月起主張其專利權者。 本案針對專利承諾之效力引發許多討論,未來於此訴訟案件中法院如何評價莫德納之專利承諾以及對於其效力之認定,亦可能影響現有之專利承諾生態:若企業可任意收回、更改其承諾,並於後續得以訴訟手段提告運用其專利之第三人,或有可能影響公眾對於專利承諾信任或利用意願;而若專利承諾不能任意修改,企業須受自身之承諾嚴格拘束,則未來或許即使社會遭遇危機,企業亦不敢貿然發布專利承諾應對危難。因此,此案後續發展將對整體專利承諾與授權影響重大,值得持續進行關注及了解。
解析生技製藥研發成果涉及智慧財產保護之新課題 美國白宮發佈「AI應用監管指南」十項原則美國白宮科技政策辦公室(Science and Technology Policy, OSTP)在2020年1月6日公布了「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」,提出人工智慧(AI)監管的十項原則,此份指南以聯邦機構備忘錄(Memorandum for the Heads of Executive Departments and Agencies)的形式呈現,要求政府機關未來在起草AI監管相關法案時,必須遵守這些原則。此舉是根據美國總統川普在去(2019)年所簽署的行政命令「美國AI倡議」(American AI Initiative)所啟動的AI國家戰略之一,旨在防止過度監管,以免扼殺AI創新發展,並且提倡「可信賴AI」。 這十項原則分別為:公眾對AI的信任;公眾參與;科學誠信與資訊品質;風險評估與管理;效益與成本分析;靈活性;公平與非歧視;揭露與透明;安全保障;跨部門協調。旨在實現三個目標: 一、增加公眾參與:政府機關在AI規範制定過程中,應提供公眾參與之機會。 二、限制監管範圍:任何AI監管法規實施前,應進行成本效益分析,且機關間應溝通合作,建立靈活的監管框架,避免重複規範導致限制監管範圍擴大。 三、推廣可信賴的AI:應考慮公平性、非歧視性、透明性、安全性之要求,促進可信賴的AI。 這份指南在發佈後有60天公開評論期,之後將正式公布實施。白宮表示,這是全球第一份AI監管指南,以確保自由、人權、民主等價值。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。