美國食品和藥物管理局(FDA)於2018年9月6日發布關於「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案。」 為滿足FDA促進公共健康的使命,醫療器械上市前核准(PMA)通常涉及較高的不確定性,因此本指引是適當的解決利益風險的判定以支持FDA的決策。包含考量患病群願意接受醫療器械帶來的益處及風險之更多不確定性,特別是沒有可接受的替代治療方案時。 根據指引草案,FDA依據具體情況,判定其利益-風險的適當程度之不確定性,包括: (1) 醫療器械可能帶來好處程度。 (2) 醫療器械存在的風險程度。 (3) 關於替代治療或診斷的利益-風險之不確定程度。 (4) 如果可能,需瞭解患者對醫療器械可能帶來的益處和風險之不確定性觀點。 (5) 公共衛生需求的程度。 (6) 依據臨床證據可支持上市前之可行性。 (7) 能夠減少或解決醫療器械的上市後利益-風險留下之不確定性。 (8) 上市後緩解措施的有效性。 (9) 建立決策類型。(如上市前核准(PMA)和人道用途器材免除(HDE)的核准標準不同。) (10) 對於早期患者訪問醫療器械的可能帶來的益處。 本指引草案中,FDA基於考量有關醫療器械臨床/非臨床訊息之利益風險,需與FDA的規範、監管機關和要求要有一致性。
美國化學營業秘密哪些必須揭露?哪些可以保密?為因應有害化學物質所產生之公安事件,2015年6月8號美國職業安全管理局(Occupational Safety and Health Administration,簡稱(OSHA))發佈一項措施,針對具危險性化學物質之運輸過程,規範處理程序,包括製造商須提供物質安全數據表,以及可能具有風險的有害物質說明書等。 為此,OSHA考量到此將影響化學製造商營業秘密保護,遂提出判斷準則,以釐清對於化學製造商而言,何種情況將構成營業秘密,包括:(1)在一定的程度內該資訊是否已被外界所知;(2)在一定程度內,該資訊對於員工或其他參與者是否已知;(3)是否有一定程度對於該資訊內容進行保護措施;(4)該資訊對於競爭對手是否有價值;(5)是否投入大量時間和金錢開發該資訊;(6)該資訊對企業而言是否得被他人簡易取得與複製。 進而在符合上述營業祕密要件時,企業即無須對一般員工(非研發工程師)揭露化學公式等內容,其中包括一般操作人員或者運輸人員等。然而考量到此等人員接觸化學物質情況頻繁,倘若操作人員或者運輸人員工作過程中,因有害但屬營業祕密之化學物質造成意外傷害,為平衡公眾安全與營業秘密之保障,OSHA要求化學製造商必須立即提供醫護人員有害化學物質方程式等內容,但可要求醫護人員簽訂保密協議,藉此兼顧公安與營業秘密之保障。
美國倡建無人機系統整合先導計畫考量無人機系統與國家空域系統及有人駕駛飛機的有效協作,除能提升產業效能與生產力外,同時也強化國家公領域安全的管理。基此,美國總統川普遂發布總統備忘錄倡議建立無人機系統整合先導計畫,期能透過該計畫促進創新應用,並以公私協力的方式進行無人機系統與國家空域系統之整合。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」