美國國家標準技術局(the National Institute of Standards and Technology,NIST) 建立網路專頁,提出聯邦各部會所研發技術的移轉計畫報告,揭示各部會具體執行白宮在去(2011)年10月28日所發布的總統備忘錄(Presidential Memorandum),要求各聯邦實驗室進行技術研發並提高移轉給私部門之比例,以使政府投資之研發成果可以供大眾市場所用,以進一步加速經濟成長與提昇美國產業競爭力。
觀察白宮所發布的政策文件指出,聯邦政府將創新技術研發,視為刺激經濟的一個重要工具,而有效的技術移轉又是成功的技術研發的重要驅動力,故歐巴馬政府啟動美國計畫(Startup America Initiative)將政府研發技術的移轉作為重要支柱之一,並預計於5年內達成具體成績。
於NIST網頁公布之13個聯邦部會所提出之執行計畫,包括各機關自訂目標與評量標準,以評估刺激技術移轉計畫之成效。而作為美國產業技術研發與標準制訂之主要推動機構,NIST的技術移轉計畫將調整技術移轉的定義與內涵,俾更為精確地反應和評估廣泛的技術研發活動。未來NIST將擴張各項衡量指標,如標準參考物質和數據(Standard Reference Materials and Data)、專利授權、共同研究等的追蹤範圍,此外包括軟體下載、研究人員、新創公司等亦納入新的衡量指標範圍之內。同時在完善技術移轉活動追蹤機制方面,NIST將建立內部人員參與私部門統一標準制訂委員會之資料庫。
包括NIST在內以及美國商業部與其他各主要進行產業技術研發的聯邦部會之技術移轉計畫,揭示了技術移轉在美國技術研發活動週期中的重要性,具體執行、評估之方式,可自NIST專頁進行下載、分析並作為政策規劃之參考。
本文為「經濟部產業技術司科技專案成果」
美國衛生部隸屬之醫療資訊科技標準委員會(Health IT Standards Committee)為了因應「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, “ARRA”)的通過,制定了新的電子醫療紀錄的隱私、安全標準,以擴大保護電子醫療紀錄的使用安全。 這次制定的電子醫療紀錄的隱私、安全標準,將透過具有足夠防護能力的醫療資訊科技系統標準,來保護電子醫療紀錄的交換,並且擴大適用範圍到醫療照護廠商與提供者,要求其必須在2011年前達到幾項資訊的使用控制標準,包括「醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act, “HIPAA”)與「加密促進標準」(Advanced Encryption Standard)之相關規定,以完備個人電子醫療資訊的保護網。 在此次訂立的標準之下,任何人員或是應用程式欲使用與接近電子醫療紀錄,應符合法律所授予的接近與使用之要件。同時,處理個人醫療資訊的系統,也必須具備對個人醫療資訊加密與解密的能力,以保障個人醫療資訊的安全與完整。除了以上的要求,這些標準也要求相關的適用機構,必須在2013年以前完成符合病歷交換格式(HL7)的使用接近控制、安全宣示標記語言(Security Assertion Mark-up Language, “SAML”)、網路服務認證(Web Service Trust, “WS-Trust”)以及促進資訊標準建置組織(Organization for the Advancement of Structured Information Standards, “OASIS”)的機制,以保障醫療資訊的安全。
OTT影音發展與著作權-以英國為例 美國國土安全部保護物聯網策略原則簡介 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。