為了滿足行動寬頻時代對於無線頻譜的需求,美國規劃了多種不同的頻譜釋出、分享或共用的政策,以增加可用的頻寬或提高使用效率,其中針對既有的數位無線電視服務所使用的頻譜,則提出「獎勵拍賣機制(incentive auctions)」。此機制最初於2010年由FCC提出,其特色在於具備自願性及市場導向兩項內涵。本次美國啟動獎勵拍賣機制,主要目的為藉由新業務之頻譜拍賣,將所得之部分標金作為誘因,以鼓勵廣播電視業者繳回原有頻譜使用權,並促進美國寬頻計畫(National Broadband Plan)之發展。目前針對此機制,美國國會已於2012年2月22日正式授權FCC執行。而FCC則於2012年10月2日發布FCC 12-118法規制定建議通知(Notice of proposed rulemaking, NPRM),並依據美國「2012年中產階級稅收減免及創造就業法案」(Middle Class Tax Relief and Job Creation Act of 2012)之授權,針對廣播電視頻譜獎勵拍賣機制進行商擬,並廣徵各界建議。
本次廣播電視頻譜獎勵拍賣機制主要可區分為三個步驟,(一)反向拍賣(reverse auction),指廣播電視業者藉由投標之方式,標得原持有頻段之自動放棄權。(二)頻譜重組(reorganization or repacking),此步驟是為了讓廣播電視頻譜藉由重組後,可釋出部分的超高頻(UHF)頻段以作為其他業務使用。(三)正向拍賣(forward auction),即針對頻譜進行重新授權,對此FCC提出將以更為彈性的概念使用頻譜。
目前整體拍賣機制尚處發展階段,各步驟內部運作應如何規劃,FCC仍積極尋求外界建議。不過從FCC所提出的五項關鍵政策目標(key policy goals)中,亦可歸納出未來整體機制的規劃方針包含(一)提升頻譜效能,期望未來得以5MHz為拍賣單位,並且支持各類無線行動技術如W-CDMA、HSPA以及LTE技術之發展、(二)確保不干擾鄰近國家頻譜之使用、(三)發展各頻段之通用性(interchangeable),促進各頻譜區段在重新配置後具備可替換性、(四)刺激頻譜回收達理想數量,以及(五)促進頻譜技術中立概念。面對美國在提升頻譜使用效率策略上又一記新嘗試,即便目前仍有許多不確定因素亟待突破,但就促進頻譜使用效率而言,亦不失為頻譜交易機制之外,另一可參考之方向。
依據美國專利法第101條規定,任何人發明或發現一新的、有用的程序、機器、製造物、組合物,或做出任何新的或有用的改良,並符合專利法所定之其他條件或要求,即可以取得專利權;然而,今年(2014年06月19日)美國聯邦最高法院於Alice Corp. v. CLS Bank International一案,認定原告透過第三方中介電腦系統 促進交易雙方交換資訊,以降低交易風險之技術,只是將抽象概念(第三方中介交易之商業方法)以一般方式於電腦軟體運行,故無法取得專利。 司法實務上,各級法院開始遵循此一判決先例,宣告與此性質類似之專利無效。例如:於Buysafe, Inc. v. Google, Case No. 2012-1575 (Fed. Cir. Sept. 3, 2014)一案,法院認定原告用來擔保線上交易安全之技術,只是將擔保契約關係此抽象概念運用於網路,故無法取得專利;於Loyalty Conversion Systems v. American Airlines, Inc., Case No. 2:13-CV-655 (E.D. Tex. Sept. 2, 2014)一案,法院認定原告以獎勵點數換取消費點數之技術,只是將貨幣交換此抽象概念透過電腦進行,故亦無法取得專利。 由各級審法院判決可以觀察到,以商業方法(抽象概念)為內容的電腦軟體專利有逐漸被宣告無效的趨勢,尤其是涉及到:縱使不以電腦軟體運行,但似乎亦可完成的交易方法。由此可見,各級法院對於專利法第101條已經開始採取較嚴格的審查標準。未來無論在專利申請或專利訴訟時,都宜一併考量Alice Corp. v. CLS Bank International案所帶來的影響。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。
英國提出因應GDPR自動化決策與資料剖析規定之細部指導文件2018年5月,英國資訊專員辦公室(Information Commissioner’s Office, ICO)針對歐盟GDPR有關資料自動化決策與資料剖析之規定,公布了細部指導文件(detailed guidance on automated decision-making and profiling),供企業、組織參考。 在人工智慧與大數據分析潮流下,越來越多企業、組織透過完全自動化方式,廣泛蒐集個人資料並進行剖析,預測個人偏好或做出決策,使個人難以察覺或期待。為確保個人權利和自由,GDPR第22條規定資料當事人應有權免受會產生法律或相類重大效果的單純自動化處理決策(a decision based solely on automated processing)之影響,包括對個人的資料剖析(profiling),僅得於三種例外情況下進行單純自動化決策: 為簽訂或履行契約所必要; 歐盟或會員國法律所授權; 基於個人明示同意。 英國2018年新通過之資料保護法(Data Protection Act 2018)亦配合GDPR第22條規定,制定相應國內規範,改變1998年資料保護法原則上容許資料自動化決策而僅於重大影響時通知當事人之規定。 根據指導文件,企業、組織為因應GDPR而需特別留意或做出改變的事項有: 記錄資料處理活動,以幫助確認資料處理是否符合GDPR第22(1)條單純自動化決策之定義。 倘資料處理涉及資料剖析或重大自動化決策,應進行資料保護影響評估(Data Protection Impact Assessment, DPIA),判斷是否有GDPR第22條之適用,並及早了解相關風險以便因應處理。 提供給資料當事人的隱私權資訊(privacy information),必須包含自動化決策之資訊。 應確保組織有相關程序能接受資料當事人的申訴或異議,並有獨立審查機制。 指導文件並解釋所謂「單純自動化決策」、「資料剖析」、「有法律效果或相類重大影響」之意義,另就可進行單純自動化決策的三種例外情況簡單舉例。此外,縱使符合例外情況得進行單純自動化決策,資料控制者(data controller)仍必須提供重要資訊(meaningful information)給資料當事人,包括使用個人資料與自動化決策邏輯上的關聯性、對資料當事人可能產生的結果。指導文件亦針對如何向資料當事人解釋自動化決策處理及提供資訊較佳的方式舉例說明。
WHO發布《2019‑nCoV戰略準備和應對方案》呼籲全球加速研發創新以對抗疫情2020年2月3日,世界衛生組織(World Health Organization, WHO)發布《2019新型冠狀病毒戰略準備和應對方案》(2019 Novel Coronavirus: Strategic Preparedness and Response Plan),呼籲全球合作以加速研發創新,對抗新型冠狀病毒(2019 novel coronavirus, 2019-nCoV)。WHO提出的戰略目標包含六大項:限制人與人間的傳播防止疫情擴散、盡速發現並隔離以便提供患者最佳照護、查明並減少動物來源的傳播、加速診斷治療和疫苗開發、傳達重要且正確的風險與事件資訊、透過合作夥伴關係減少疫情對社會經濟影響。而WHO設立的戰略目標,可以透過以下方式實現:(1)加速建立國際協調方案,透過現有機制及合作夥伴關係提升防疫戰略、技術及業務支持。(2)擴大各國家的災難準備與緊急應變行動方案,包括加強準備、迅速發現、診斷並進行治療;在可行的情況下發現並追蹤感染者;強化醫療機構中的感染預防及控制;實施旅行者的健康管理措施;提升人民對疫情風險認識、減少社區交流風險等。(3)加速對2019‑nCoV的研究及創新,優先推動快速篩檢追蹤與擴大研發創新規模、開發候選療法、疫苗及診斷方法,確保醫療資源的公平可用性。藉由防疫標準化流程與知識平台的建立,促進並匯集學界合作的研究成果。 另外,WHO在本戰略中明列出八大衡量指標,用以評估各國因應2019-nCoV的計畫準備與成效,以便WHO能與政府合作,共同改善全球防疫系統。該八大指標分別為:流行病學症狀分析與疫情規模判斷能力、戰略準備及預算管理計畫、防疫物資供應程度、研究開發與臨床實驗比例、國家公共衛生系統疫情準備能力、建構檢驗與快篩的即時通報系統、完善診斷流程與安全隔離措施、疫情報告與資訊分享機制等。