歐盟認可紐西蘭已提供相當於歐盟保護層級之個人資料保護

  在2012年12月19日,歐盟執委會宣布一項決議,該決議認可紐西蘭為已提供相當於歐盟保護層級之個人資料保護的國家;根據1995年歐盟個人資料保護指令(EU Data Protection Directive of 1995),此決議將使位於歐盟會員國(目前為27國)的事業,可以不必採取額外的防護措施,即可將個人資料自歐盟會員國傳輸到紐西蘭。

 

  根據歐盟個人資料保護指令,個人資料不許被傳輸至歐盟會員國以外的國家,除非這些國家被歐盟執委會認可為,已提供相當於歐盟保護層級的個人資料保護;或此些國家對上述傳輸已採取額外的防護措施,例如已取得當事人之同意,或已於相關契約內附有經歐盟認可之個人資料保護相關契約條款。歐洲經濟區(EuropeanEconomic Area;簡稱EEA)內的另三個國家,亦即挪威、冰島、列支敦士登,亦因EEA條約(Agreement on the European Economic Area)之約束,而須遵行個人資料保護指令。

 

  由於上述認可的過程相當嚴格而繁複,目前已取得歐盟執委會上述認可的非歐洲國家,除了紐西蘭之外,僅有例如,加拿大、阿根廷、以色列、澳洲等少數國家;至於歐洲國家亦僅有例如瑞士、安道爾等數國。

相關連結
※ 歐盟認可紐西蘭已提供相當於歐盟保護層級之個人資料保護, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=5929&no=64&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
英國金融行為監督總署公布《加密資產指引》諮詢文件

  英國金融行為監督總署(Financial Conduct Authority, FCA)與英國財政部、英格蘭銀行於2018年3月共同組成「加密資產專案小組」(Cryptoasset Taskforce),為英國政府「金融科技產業戰略」(Fintech Sector Strategy)之一環。2019年1月23日,FCA公布《加密資產指引》(Guidance on Cryptoassets)諮詢文件,除在配合加密資產專案小組之調查、研究外,亦在於落實FCA作為金融監理主管機關,盤點及釐清法規適用之職責,以妥適因應金融科技發展。公眾意見徵集期間至2019年5月4日,FCA並預計在同年夏季提出最終版本的報告。   依據《加密資產指引》,FCA臚列了四項監理代幣(token)可能的法源依據,包含: (1)受監管活動指令(Regulated Activities Order)下的「特定投資項目」。 (2)歐盟金融工具市場指令II(MiFID II)下的「金融工具」。 (3)電子貨幣條例(E-Money Regulations)下之「電子貨幣」。 (4)支付服務條例(Payment Services Regulations)。   由於加密資產市場與分散式記帳技術發展迅速,參與者迫切需求更清晰之監理規範,包含交易匯兌、主管機關等,避免因誤觸受管制之活動(regulated activities)而遭受裁罰。其次,FCA亦希望能強化消費者保護,依照加密資產商品類型,讓消費者知道可以尋求何種法律上之保障。

日本內閣府公布生成式AI初步意見彙整文件,提出風險因應、應用及開發兩大關注重點

日本內閣府於2023年5月26日召開第2次「AI戰略會議」(AI戦略会議),並公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理)。鑒於AI對於改善國人生活品質、提高生產力無疑有相當助益,考量生成式AI甫問世,社會大眾對其潛在風險尚心存疑慮,內閣府遂以生成式AI為核心,延續先前已公布之「AI戰略2022」(AI 戦略 2022)、「以人為中心的AI社會原則」(人間中心の AI 社会原則),以「G7廣島峰會」(G7広島サミット)所提出之願景—「符合共同民主價值的值得信賴AI」為目標,提出「風險因應」及「應用與開發」兩大關注重點,供政府有關部門參考之同時,並期待可激起各界對於生成式AI相關議題之關注與討論: 一、風險因應:AI開發者、服務提供者與使用者應自行評估風險並確實遵守法規及相關指引;政府則應針對風險應對框架進行檢討,對於已知的風險,應先以現有的法律制度、指引與機制進行處理,假如現有法制等無法完全因應這些風險,則應參考各國作法盡速對現行制度進行修正。 AI的透明度與可信賴度於風險因應至關重要。若能掌握AI學習使用哪些資料、所學習資料之來源、AI如何產生結果等,就能針對使用目的選擇適合的AI,也較易因應發生之問題,並避免AI產生錯誤結果或在對話中洩漏機密資訊等。對此,本文件呼籲AI開發者及服務提供者依據現行法令和指引主動揭露資訊,政府則應對透明度和可信賴度相關要求進行檢討,並應依普及程度及各國動向對既有的指引進行必要之修正。 二、應用與開發:本文件建議政府部門積極使用生成式AI於業務工作上,找出提升行政效率同時不會洩漏機密之方法,並向民眾宣導AI應用之益處與正確的使用方式,以培養民眾AI相關技能與素養,藉以更進一步建構AI應用與開發之框架,如人才培育、產業環境準備、相關軟硬體開發等。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

何謂「大學技術經理人協會(AUTM)」?

  大學技術經理人協會( The Association of University Technology Managers, AUTM)是一個專門贊助並增進全球學術科技移轉的非營利組織,成立於1974年,其前身為大學專利管理協會(Society Of University Patents Administrators),至今已經擁有超過3000位來自超過300間大學技術轉移室的經理人成為會員,為美國產學合作的重要組織。   該協會運作之目的為充實成員對於技術轉移的知識、贊助技術轉移活動的進行、增進產業及學界的合作與交流,以及打造友善的跨國技轉環境。   該協會每年對美國及加拿大的大學、教學醫院,以及研究機構進行問卷調查,以了解各大學級研究機構的技術授權情形,並發布年度授權活動調查報告 (AUTM Licensing Activity Surveys)。其亦每年舉辦年會,提供來自全美各地的大學、研究機構、營利及非營利組織,以及全球對技術轉移議題有興趣的單位一個資訊交流的場合,會中除了舉辦針對技術轉移議題的研討會以外,並會提供相關企業或組織展示其技術移轉之服務及成果的機會,提供與會者認識技術移轉之世界趨勢的機會。

TOP