英國知名巧克力品牌Cadbury2004年10月向英國智慧財產局提出商標申請,欲將其招牌包裝用色(Pantone 2685C紫色)註冊為商標,指定使用於巧克力相關產品的包裝上,產品包含巧克力條、巧克力片、巧克力糖、包有內餡的巧克力、可可亞飲料、巧克力飲料、巧克力蛋糕。
自此,單一顏色是否可註冊成為商標之爭議不斷出現,努力長達將近8年,Cadbury終於今年4月在英國獲准將該紫色註冊成為商標。
註冊公告後Cadbury最大競爭對手Nestle(雀巢)旋即提出異議,其認為該紫色不具有識別性,且即便有識別性被核准註冊,其被賦予的商標權範圍亦過寬大(該紫色註冊商標指定使用之產品種類眾多)。
此顏色商標註冊爭議戰火持續燃燒,直至今年本月(10月),由英國高院(High Court)判決確認。法官首先說明單一顏色能做為商標保護標的,只要商標申請人明確定義清楚顏色色號(Pantone number)及顏色使用方式。此外,單一顏色註冊成為商標,商標權保護範圍應特別注意,僅限於使用該顏色時具有識別性之特定產品或服務上。
回到本案,法官提及Cadbury從1914年起即使用此紫色於牛奶巧克力棒(Dairy Milk bars),且Cadbury已提出足夠證據證明Pantone 2685C紫色具由識別性,相關消費者看到該紫色會聯想到Cadbury。然而,法官亦同時指出,對相關消費者而言,該紫色使用於牛奶巧克力及飲品時,方具有識別性,使用在其他巧克力相關產品上時,並不具有識別性,故法官就紫色註冊商標保護範圍進行了限縮。
針對判決結果,Cadbury高興地表示取得顏色商標對於品牌識別性及維護有正面作用,除了文字商標外,對品牌又多了一層保護。
此判決出爐後,似乎可預見日後將有更多品牌企業申請註冊顏色商標,加強品牌保護。
今(2010)年5月,美國克雷格文特爾研究所宣布,成功完成首個由電腦設計之人造基因組控制,並具有自我繁殖功能的合成細胞,研究人員將其取名為辛西亞(Synthia),並發表於科學雜誌,此舉意味生物科技的發展,已經從生命複製階段步入生命創造階段。此次合成細胞的成功,引發先進國家政府方面的對經濟利益、管理及社會法制影響等方面的重視。美國總統歐巴馬便敦促生物倫理委員會對此發展進行密切觀察,評估此研究將之影響、利益和風險。 英國對於合成生物學發展的規範議題也十分關心,該國2009年開啟有關合成生物學的公眾對話(public dialogue),並於今年6月完成並公布報告。獲得的結論如下: 一、肯定合成生物學所帶來的機會: 英國民眾普遍認為合成生物學的應用將會帶來許多重要的機會,可協助解決當前社會所面臨的重大挑戰,例如氣候變遷、能源安全與重大疾病等。 二、關心合成生物學發展的不確定性: 由於合成生物學的發展充滿著不確定性,故當長期的負面影響尚未可知時,有些民眾反而因發展過於快速而覺得到沒有確定感。 三、期待國際規範形成: 英國民眾認為希望能有國際性的合成生物學規範與管理措施,尤其應針對合成生命物質在未受到管制而釋出於環境之生物安全議題,猶應有國際性的管理規範。 四、衡量科研人員動機: 英國民眾擔心,研究者好奇心的驅使,會使合成生物學發展過於快速,故應衡量其研究所帶來的廣泛影響。 五、強調科研人員之責任 負責資助的研究委員會應有清楚角色,促使科學家在此新興科技領域研究中,培養思考科學家責任之能力。 此次對話結果將會納入英國對合成生物學研究補助的法規政策,成為決定補助方式、項目與範圍的重要參考依據。這樣的作法是考量到,希望使合成生物學在健全的管理與法規下持續發展,預先減低過往生物科技發展導致民眾疑慮而致延滯發展的可能性,也更能將政府科研資助有效地投入有利於國家整體發展的領域中。
OECD發布「促進人工智慧風險管理互通性的通用指引」研究報告經濟合作發展組織(Organisation for Economic Co-operation and Development,下稱OECD)於2023年11月公布「促進AI風險管理互通性的通用指引」(Common Guideposts To Promote Interoperability In AI Risk Management)研究報告(下稱「報告」),為2023年2月「高階AI風險管理互通框架」(High-Level AI Risk Management Interoperability Framework,下稱「互通框架」)之延伸研究。 報告中主要說明「互通框架」的四個主要步驟,並與國際主要AI風險管理框架和標準的風險管理流程進行比較分析。首先,「互通框架」的四個步驟分別為: 1. 「定義」AI風險管理範圍、環境脈絡與標準; 2. 「評估」風險的可能性與危害程度; 3. 「處理」風險,以停止、減輕或預防傷害; 4.「治理」風險管理流程,包括透過持續的監督、審查、記錄、溝通與諮詢、各參與者的角色和責任分配、建立問責制等作法,打造組織內部的風險管理文化。 其次,本報告指出,目前國際主要AI風險管理框架大致上與OECD「互通框架」的四個主要步驟一致,然因涵蓋範圍有別,框架間難免存在差異,最大差異在於「治理」功能融入框架結構的設計、其細項功能、以及術語等方面,惟此些差異並不影響各框架與OECD「互通框架」的一致性。 未來OECD也將基於上述研究,建立AI風險管理的線上互動工具,用以協助各界比較各種AI風險管理框架,並瀏覽多種風險管理的落實方法、工具和實踐方式。OECD的努力或許能促進全球AI治理的一致性,進而減輕企業的合規負擔,其後續發展值得持續追蹤觀察。
18F與加州政府共同打造採購新流程美國的數位服務推動小組18F(Digital service delivery,18F),因辦公室位於華盛頓特區F街18號而得名。2014年3月由總務署(General Service Administration,GSA)成立,透過業界與政府合作模式,幫助政府機關改善流程及增進效率,其所輔導的專案計畫將實際轉變政府機關提供數位服務及科技產品之運作模式,以達跨部會、機關之整合,並使對公眾的數位服務更便於使用。 18F為幫助美國各機關建造、購買及分享現代數位服務以提升政府的使用者經驗,提供了五項服務:(一)就已存的數位規格(digital component)打造訂製化產品(custom products);(二)以創新方式購買科技,使各政府能夠獲得更快、更好及產生更好結果的IT服務。詳細服務內容有代寫委外服務建議書(Request For Proposal,RFP)、開發市場利用現代技術購買IT服務、購買開放源代碼(open source code)以提升專案計畫;(三)替政府建造一安全、可擴展的工具與平台,其能更加符合需求並能夠持續為改善以達需求;(四)協助成為數位化組織,不只是增加組織內部數位化能力,更要形成數位習慣並最終促使組織文化改變;(五)透過討論會、設計工作室、指南及文件工作平台,提供及分享18F實際運用的相關現代數位化服務技術,使政府機關能自行複製及使用。 近期知名成果案例發生於加州。在加州,每一年的孩童福利服務案件管理系統超過2萬名社工利用為追蹤管理超過50萬件虐待及忽視兒童案件,若使用過時系統產生風險將無法估計,故加州政府、美國衛生與人群服務部(Department of Health and Human Services,DHHS)即利用了前述相關服務,與18F共同重新設計該系統的採購流程。從2015年11月至2016年10月,合作建立新系統不到1年的時間,導入了契約文件之簡化、模組化(modular)契約之合併、敏捷性開發(agile development)、使用者中心之設計及開放源(open source)之實踐。 首先,代寫委外服務建議書,18F於其中展示如何將專案計畫為模組化,亦即別於過往採購的傳統模式,非尋找單一開發商去建置整個已預設需求的系統,透過分離的方式,找尋不同開發商以更符合實際需求,亦能避免時間金錢的浪費,降低遲約或違約之風險。再者,聚集可能符合資格的供應商,邀請眾供應商建造以開放源代碼(open source code)方式的原型(prototype)。透過此一過程的激盪,18F從中協助評估所提出的原型、技術等,以了解供應商如何提出及是否符合使用者中心的設計。同時也能減少政府與供應商雙方的招標時間及行政成本。最後,為使加州政府機關能自行複製及使用相關現代數位化服務技術,18F示範敏捷軟體開發(agile software development)專案計畫。從中加州政府不僅瞭解如何為風險評估,且思考相關技術部門於專案計畫中的角色定位。 面臨現代化數位服務,在美國,聯邦與州政府都面臨極大挑戰。18F介入發展新模式,更能達實際需求,亦為內化之協助,利於政府自行發展其他數位服務。18F與加州政府合作之案例,或許能為國家發展數位服務運作之借鏡。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。