由聯合國「國際電信聯盟」(the UN's International Telecommunication Union ,ITU)主持的國際電信世界大會(the World Conference on International Telecommunications ,WCIT)於2012年12月14日在杜拜落幕,此次有193個國家的政府代表與會,主要議題討論是否要更新自1988年以來已經24年未經修改的全球電信規則(the International Telecommunication Regulations ,ITRs),該修正案主要係由中國與俄羅斯所提出,其有意授權政府監管網際網路,盼望各國能合作打擊垃圾郵件並促進網路的普及。
這項修正案最大爭議點就在「人權」二字。若政府擁有網路審查權成為普世價值,保護言論自由是否將流於口號,某些習慣高壓政策的國家是否會濫用審查權,控制輿論進行不當審查與管制?
ITU秘書長Hamadoun Touré認為網際網路應該納入全球電信政策框架下,但反對派則認為此舉扼殺了網路自由,美國代表團團長Terry Karamer則主張,網路政策不應由聯合國成員國來定,應該由公民、社群以及更廣大的社會來決定。
經過激烈的辯論之後,共有89國支持這項修正案,而包括美國、加拿大、澳洲和英國在內的55個國家已經拒絕簽署,該修正案將於2015年1月1日生效,由於修正後的新規定必須經過所有成員國同意才具全球約束力,大會呼籲未簽署或已經拒絕簽署的55國應盡速簽署。
英國資料倫理與創新中心(Centre for Data Ethics and Innovation, CDEI)於2019年10月發布「議題速覽-深度偽造與視聽假訊息」報告(Snapshot Paper - Deepfakes and Audiovisual Disinformation),指出深度偽造可被定義為透過先進軟體捏造特定人、主題或環境樣貌之影片或聲音等內容。除取代特定主體之臉部外,其亦具備臉部特徵重塑、臉部生成與聲音生成之功能。而隨相關技術逐漸成熟將難辨網路視聽影像之真偽,故CDEI指出有必要採取相關因應措施,包含: 一. 立法 許多國家開始討論是否透過訂立專法因應深度偽造,例如紐約州眾議院議員提出法案禁止特定能取代個人臉部數位技術之應用,美國國會亦有相關審議中草案。然而,縱有法律規範,政府仍無法輕易的辨識影片製造者,且相關立法可能抑制該技術於正當目的上之應用,並導致言論自由之侵害,故未來英國制定相關制度之制定將審慎為之。 二. 偵測 媒體鑑識方法於刑事鑑識領域已實行多年,其也可以運用於辨識深度偽造。媒體鑑識方法之一為檢查個體是否有物理上不一致之現象,以認定特定證物是否經竄改,包括拍攝過程中被拍攝對象是否眨眼,或皮膚上顏色或陰影是否閃爍。雖目前英國相關鑑識專家對於媒體鑑識方法是否可辨識深度偽造仍有疑義,惟相關單位已經著手發展相關技術。 三. 教育 教育亦為有效因應深度偽造之方法。目前許多主流媒體均開始喚起大眾對於深度偽造之意識,例如Buzzfeed於去年即點出5個方法以辨認有問題之影片。科技公司也開始投入公眾教育,提高成人網路使用者對於假訊息與深度偽造之辨識,然而報告指出其成效仍有待觀察。
日本創設搭載遠距型系統自駕車基準緩和認定制度日本國土交通省於2017年2月修正《道路運輸車輛安全基準》第55條第1項、第56條第1項及第57條第1項規定之告示,放寬車輛安全基準規定,期望自動駕駛實驗能順利展開。惟在各種自動駕駛實驗中,遠距型自動駕駛系統是透過電信通訊技術,從遠距離外操作車輛行駛,儘管修法後已放寬安全基準規定,但其仍與現行以車內有駕駛為前提而訂定之《道路運輸車輛安全基準》相距甚遠,想一律判斷其符合安全基準有所困難。據此,為使遠距型自駕系統道路實驗能夠順利進行,國土交通省於2018年3月30日創設「搭載遠距型系統自駕車基準緩和認定制度」,明確規定遠距型自駕系統實施道路實驗所需各項手續。 「搭載遠距型系統自駕車基準緩和認定制度」規定項目包括︰申請放寬基準之對象、申請者、申請書及繳交文件、審查項目、條件及限制、基準放寬之認定、車體標示、行政處分等。
歐盟發佈關於監督金融業之數據保護準則歐洲數據保護監督組織(European Data Protection Supervipsor,EDPS)發表「關於在歐盟監督金融業之數據保護準則」(Guidelines on Data Protection for Financial Services Regulation),以作為確保歐盟的數據保護規範,將被整合進正在發展中的金融政策與相關規定之實用工具。該準則為金融市場監督機制的一部分,在金融業對個人資料的處理上,特別是透過監控、記錄保留、回報、以及資訊交換這些存有侵犯個人資料和隱私權風險的措施予以規範。 該準則包含10項步驟與建議,旨在協助歐盟後續金融監督政策的制定,其中一些重要的建議如下: (1)應評估資訊之處理是否可能妨礙隱私權。 (2)應為數據的處理建立法律基礎。 (3)評估適當的資訊保留期限並給予正當化依據。 (4)建立個人資料傳輸至歐盟外的正當法律依據。 (5)提供個人資料保護權利的適當保障。 (6)衡量適當的數據安全保護措施。 (7)應為數據處理的監督提供特定之程序。 有鑒於2008年金融危機的影響,該準則透過提供一個能確保個人資料被妥善保護的有效方法,期以重建金融市場的信心。Giovani Buttarelli,作為新任歐洲數據保護監督委員,在一份伴隨準則釋出的聲明稿當中表示:「個人資料的價值已經隨著數位經濟的成長不斷增加,確保各行業的個人資料得以受到保護也益顯重要。歐洲數據保護監督組織(EDPS)計畫對不同行業制定相關保護規範,此準則是第一個發佈的。」
美國科羅拉多州通過《人工智慧消費者保護法》2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。