Ericsson專利訴訟新打手—專利蟑螂

  據報載,瑞典電信鉅業愛立信公司(Ericsson)已經將超過兩千筆的專利組合出售給Unwired Planet公司,此舉將更有利於Unwired Planet公司在智慧型手機的侵權官司當中繼續爭訟。此外,Unwired Planet公司宣稱Ericsson公司所移轉的2185件專利當中,包括美國及他國之專利權、專利申請案件給Unwired Planet公司,在這些移轉的專利組合當中,多數的技術都是與2G、3G,以及長期演進技術(Long Term Evolution,簡稱LTE)的專業技術領域有關。

 

  Unwired Planet公司成立於1996年,同時宣稱自己為”行動網路的發明家”。透露說為了這次的合作,從公司成立時不久,即開始與授權公司以及Ericsson公司接洽。公司高層並指出,透過與Ericsson公司的合作,事實上已經傳達了高值的社會價值,反映出我們所承諾要保護並展現創新的觀點。

 

  Unwired Planet公司是一間藉由把持專利權,以在各科技公司間興頌,並從中獲得利益的公司,通常被稱為專利蟑螂(patent troll)。

相關連結
※ Ericsson專利訴訟新打手—專利蟑螂, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6019&no=55&tp=1 (最後瀏覽日:2026/02/04)
引註此篇文章
你可能還會想看
合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

歐盟個資保護委員會公布GDPR裁罰金額計算指引

歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。 時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下: 1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。 2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。 3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。 4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。 5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。 EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。

美國音樂授權制度邁向新里程碑:集體授權組織MLC將於後年正式運行!

  美國「音樂現代化法案」(Music Modernization Act,簡稱 MMA) 於2018年10月由總統川普簽署成為有效法律之後,於今年(2019)9月17日正式對外發布消息,其依照MMA之規定,美國著作權局已於今年7月8日指定由「美國音樂發行協會」(National Music Publishers Association,簡稱NMPA)成立「機械式集體授權組織」(The Mechanical Licensing Collective,簡稱MLC)。NMPA係全美音樂發行商之貿易協會,早於1917年運行至今,現被指定成立MLC,擬於2021年1月正式開始進行全美音樂之「概括授權」(blanket license),並維運前所未有的「透明化資料庫」,期能對接音樂串流平台,促使音樂作品比對相關著作權之權利人,藉以有效率且準確地支付相關授權金給詞曲創作人和發行人,且串流平台業者只要確實遵守MMA之概括授權與MLC之運作方式,即免於侵權責任MLC之組織體編制與人員名單資訊,亦透明地揭示於官網,其設有MLC董事會(由BMG、SONY、華納音樂等背景之人員擔任),以及「無人認領授權金監督委員會」、「爭端解決委員會」、「營運顧問委員會」等三個委員會,各委員均由音樂著作權人或詞曲創作等人擔任。   MMA立法之初,試圖創設一全新、單一窗口非營利組織,並建置符合現代科技的數位資料庫,來解決音樂授權的痛點。而今MLC即將於後年1月正式運行,在數位時代借力科技,帶領音樂授權邁向新里程碑!

污者自付 中國大陸擬徵生態稅

  中國大陸能源基金會副主席楊富強日前透露,能源基金會、世界自然基金會與國家財政部正在研討開徵「生態稅」。目前,正在為能源對環境的影響成本進行核算,年內相關草案將出爐。   據中國大陸媒體報道,世界自然基金會氣候變化與能源項目負責人甘霖表示,生態稅主要目的就是為了保護生態環境和自然資源,向所有因其生產和消費而造成外部不經濟的納稅人課徵的稅收。    生態稅涉及所有消費化學能源的行業,讓企業去承擔環境成本,實現生態和資源價值的合理補償。目前,生態稅的標準正在研討中,不同的行業對應不同的稅收標準。這個標準與企業的排放有關。根據企業排放量的多少,制定一個限定的比例,再乘以企業的年生產量。也就是說,「企業污染的越多,承擔的環境成本就會越高。」    甘霖指出,目前綠色能源的環境績效還不能完全轉化為經濟效益,綠色能源單位建設投資高及利用率偏低,造成綠色能源價格較高,從而無法與傳統能源競爭,成為影響綠色能源發展的一個瓶頸。現在運用稅收手段,徵收生態稅,就是要使傳統能源價格升高,從而縮小傳統能源與綠色能源之間的差價,推動全社會積極使用綠色能源。

TOP