為強化並有效因應網路安全相關議題,美國總統歐巴馬日前於4月10日提出在2014財政年度(於2013年10月開始起算)增加強化網路安全經費之建議,期待透過藉由加強並建置相關網路安全機制的方式,有效解決目前美國所面臨來自中國、伊朗、俄國、以及其他國家之的網路安全威脅;同時,其亦希望藉此厚植並改善美國政府,以及私人企業的電腦網絡防禦能力。
本次由美國總統歐巴馬所提出的國家網路安全策略主要可區分為二部分:1. 加強美國網路事件(cyber incidents)的彈性度,以及2. 減少網路威脅事件。首先針對加強美國網路事件彈性度的部份,主要會透過a. 強化美國數位基礎建設,進而能有效抵禦滲透和干擾,b. 改善美國對於複雜和敏捷的網路威脅防禦能力,以及c. 培養針對不同類型的網路事件,皆能快速應變並恢復的能力,這三個方法來加以落實。而就減少網路威脅事件的部份,則計畫以透過a. 與美國友邦結盟的方式,共同研議國際網路規範,b. 強化網路犯罪的法律執行能力,和c. 遏止潛在對手就現有之美國網路漏洞採取不當行動,三個策略模式的實施來加以實踐。然而除了上述的兩個策略及其子項的具體落實外,美國政府亦強調串連各政府部門,以及私人企業團體間之合作重要性,以及建立一個能夠使得網路維護人員及其他相關人員,得以快速取得相關網路安全資訊的便捷管道亦為重要。
隨著全球資通訊網路交流互動以及依賴程度日益增長,如何有效兼顧個人網路安全隱私及使用自由,並同時確保網路資訊流通的安全性,乃為目前強加網路安全的重要關注焦點。本次美國總統歐巴馬所提出的網路安全推動策略走向,及其如何加以落實,實值得持續關注。
本文為「經濟部產業技術司科技專案成果」
歐洲網路暨資訊安全局(European Union Agency for Network and Information Security, ENISA)於2017年11月20號發布了「重要資訊基礎設施下智慧聯網之安全基準建議」。該建議之主要目的乃為歐洲奠定物聯網安全基礎,並作為後續發展相關方案與措施之基準點。 由於廣泛應用於各個領域,智慧聯網設備所可能造成之威脅非常的廣泛且複雜。因此,了解該採取與落實何種措施以防範IOT系統所面臨之網路風險非常重要。ENISA運用其於各領域之研究成果,以橫向之方式確立不同垂直智慧聯網運用領域之特點與共通背景,並提出以下可以廣泛運用之智慧聯網安全措施與實作: (一) 資訊系統安全治理與風險管理 包含了與資訊系統風險分析、相關政策、認證、指標與稽核以及人力資源相關之安全措施。 (二) 生態系管理 包含生態系繪製以及各生態系的關聯。 (三) IT安全建築 包含系統配置、資產管理、系統隔離、流量過濾與密碼學等資安措施。 (四) IT安全管理 帳戶管理與資訊系統管理之相關安全措施。 (五) 身分與存取管理 有關身分確認、授權以及存取權限之安全措施。 (六) IT安全維護 有關IT安全維護程序以及遠端存取之安全措施。 (七) 偵測 包含探測、紀錄日誌以及其間之關聯與分析之安全措施。 (八) 電腦安全事件管理 資訊系統安全事件分析與回應、報告之資安措施。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
印度對TK( Traditional Knowledge傳統知識 )保護提出的建議修正案近年來許多先進國家的藥廠或是生技公司紛紛到生物資源豐富的國家從事生物探勘活動,希望可以尋找合適的生技產品候選者 (candidate) ,也因此產生許多不當佔有的生物盜竊 (biopiracy) 事件。 由於印度本身在 2002 年專利法修正時,特別規定生技發明之專利申請者若使用生物物質 (biological material) ,應揭露其地理來源 (source of geographical origin) ,未揭露其來源地或提供錯誤資訊者,則構成專利撤銷之理由; 2005 年的專利法修正的重點之一為「加強專利授予前異議 (pre-grant opposition) 機制」,意即未揭露生物物質之來源地或提供錯誤資訊者,或者申請專利之權利內容含有傳統知識者,可提出異議之事由。 目前國際間針對是否應強制規定申請人應揭示其來源地等仍無共識。從 2001 年的杜哈發展議程的談判會議結果即可知,由於該談判採取 「單一承諾( Single Undertaking )」模式且可從不同議題間相互掛勾,加上開發中及低度開發會員採取結盟方式來壯大談判立場,在某些關鍵議題與美國、歐盟等主要會員國形成抗衡局面。 開發中國家對於 TRIPs 第 27 條第 3 項 b 款的審議特別在乎,認為 TRIPs 協定應該修訂應納入上述的揭露需求外,還必須提供事先告知且同意 (prior informed consent) ,以及因該專利而獲取的利益與來源地分享之證明。 因此,印度提出修正 TRIPs 協定的建議,強制會員國必須改變內國法律,規定專利申請者必須揭露其發明所使用的生物物質來源,並希望能在今年 12 月香港部長會議裡討論。
全球首宗BitTorrent侵權案被判定有罪2005 年 10 月 24 日,香港屯門法院判定一名男子利用 BT ( BitTorrent )軟體非法散布三部電影的行為構成刑事犯罪。這是全球首宗有人因使用 BT 軟體而被法院裁定罪名成立。 判案書指出,該名男子將電腦內存放之影片製作成「種子」( seed ),並在網路新聞群組上宣傳自己的「種子」,以便他人下載,由於這些「種子」下載量很大,對版權所有人造成侵害,已違反了香港法例第 528 章《版權條例》第 118 條之散布( distributes )侵權重製物罪。雖然香港法例對於“散布”一詞並未詳細界定,但香港法院解釋認為,上傳 BT 種子的行為已屬於一種散布行為。 這項判決雖存有解釋上的疑義,但是本案將同時對國際間的種子提供者、下載者以及提供 BT 軟體的公司產生重大影響。蓋 BT 本身也屬於一種 P2P 軟體,下載者在下載檔案的過程中,本身也將承擔部分上傳資料的工作,故也可能在無意中觸犯相關刑罰。此外,提供 BT 軟體的公司也可能涉及侵權,因為據今年 6 月美國最高法院裁定, P2P 軟體公司必須為其客戶的侵權行為負責。