美國資訊安全分析新挑戰:巨量資料(Big Data)之應用

  在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。

 

  資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。

 

  不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。

 

  由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。

 

  美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。

 

  「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。

 

  不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。

相關連結
※ 美國資訊安全分析新挑戰:巨量資料(Big Data)之應用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6036&no=55&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
歐盟執委會發布指引以因應《人工智慧法》「禁止的人工智慧行為」條文實施

歐盟執委會於2025年2月4日發布「關於禁止的人工智慧行為指引」(Commission Guidelines on Prohibited Artificial Intelligence Practices)(下稱「指引」)」,以因應歐盟《人工智慧法》(AI Act,下稱AIA)第5條關於「禁止的人工智慧行為」之規定。該規定自2月2日起正式實施,惟其內容僅臚列禁止行為而未深入闡釋其內涵,執委會特別制定本指引以避免產生歧義及混淆。 第5條明文禁止使用人工智慧系統進行有害行為,包括:利用潛意識技術或利用特定個人或群體之弱點進行有害操縱或欺騙行為、實施社會評分機制、進行個人犯罪風險預測、執行無特定目標之臉部影像蒐集、進行情緒識別分析、實施生物特徵分類、以及為執法目的而部署即時遠端生物特徵識別系統等。是以,指引就各禁止事項分別闡述其立法理由、禁止行為之具體內涵、構成要件、以及得以豁免適用之特定情形,並示例說明,具體詮釋條文規定。 此外,根據AIA規定,前述禁令僅適用於已在歐盟境內「投放市場」、「投入使用」或「使用」之人工智慧系統,惟對於「使用」一詞,並未予以明確定義。指引中特別闡明「使用」之定義,將其廣義解釋為涵蓋「系統投放市場或投入使用後,在其生命週期任何時刻的使用或部署。」 指引中亦指出,高風險AI系統的特定使用情境亦可能符合第5條的禁止要件,因而構成禁止行為,反之亦然。因此,AIA第5條宜與第6條關於高風險AI系統的規定交互參照應用。 AIA自通過後,如何進行條文內容解釋以及法律遵循義務成為各界持續討論之議題,本指引可提升AIA規範之明確性,有助於該法之落實。

日本公平交易委員會就反托拉斯法下之智慧財產權之利用指南為部分修正

  於2016年1月21日,日本公平交易委員會(Japan Fair Trade Commission,下稱JFTC)公布了修正後的「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」,就有關標準必要專利權利行使有無違反反托拉斯法之相關問題進一步為解釋,俾利往後企業為商業行為時之參考。以下為其修正概要:一、當標準必要專利權人同意依據FRAND原則授權時,其若再提出訴訟要求排除有意願取得授權者(willing licensee)為該標準必要專利權之利用或是拒絕授權與有意願取得授權者時,該行為會被認定違反反托拉斯法。二、基於一般商業行為所為並善意進行商業談判者,會被認定屬有意願取得授權者(willing licensee),不論其之後是否就該專利有效性為爭執,或是對該專利是否屬實質必要專利為爭執。三、阻止他公司運用該專利進行研究、發展或販賣產品會被認定為不正商業行為,不論該行為是否在商品市場上產生限制競爭或獨占之結果。   JFTC為了釐清行使智慧財產權時所可能面臨是否違反反托拉斯法之相關問題,於西元(下同)2007年9月8日發布「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」與「標準化與專利池協定指南(Guidelines on Standardization and Patent Pool Arrangements)」。標準必要專利(SEP)之相關爭議原則需依這些指南為判定,但這些指南對於一些表面上屬於權利行使(例如:標準必要專利之權利人所提起之侵權訴訟)的行為定性所提供的解釋卻十分有限。因此JFTC決定修改專利指南,並且公布草案予各方利害關係人表示意見,此乃JFTC於斟酌所得之各方意見後,所為之修正。

雲端運算所涉法律議題

  雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。   雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。 「雲端運算」供應模式以及實用定義如下: ‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。 ‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。 ‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。   雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。

日本推動3種技術資訊管理制度以強化企業技術保護力

  作為企業競爭力泉源的技術資訊其價值日趨高漲,日本經濟產業省(以下簡稱經產省)以企業界為對象,於2020年7月到2021年9月召開超過20場線上「技術外洩防止管理說明會」,以技術資訊管理為核心,推動3種技術資訊管理制度: 一、技術資訊管理認證制度   基於2018年「產業競爭力強化法」修法,推動「技術資訊管理認證制度」,促進企業通過認證,強化企業取得合作夥伴信賴之能力。 二、營業秘密管理制度   基於日本「不正競爭防止法」,推動「營業秘密管理制度」,防止企業外洩自己的機密資訊,強化企業自我保護之能力。 三、安全保障貿易管理制度   基於企業對於「外國交易行為與外國貿易法」或相關法令知識不足,推動「安全保障貿易管理制度」,避免企業輸出高階技術、高性能產品被作為軍事利用而違法,進而面臨被處刑罰、行政罰之風險,強化企業承擔責任之能力。   全球新興科技發展以及嚴峻疫情驅使之下,我國許多企業投入數位轉型、採取遠距辦公,與客戶間傳遞或保管重要技術資訊時,將增加一定程度的資訊外洩風險,日本3種技術資訊管理制度可供我國企業建構技術資訊管理機制、強化企業技術保護力之參考。

TOP