在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。
資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。
不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。
由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。
美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。
「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。
不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。
鑒於中國大陸製造微電子之能力,日益趨近美國;為建立美國在科技領域之領導地位,與振興全球微電子產業。以美國參議員Charles E. Schumer和Tom Bryant Cotton為首,於2020年6月提出《美國晶圓代工業法案》(American Foundries Act)。法案重點為:(1)資助發展微電子產業與研發設備;(2)創建、擴展與現代化提升微電子產業之設備,與維護國家安全之能力;(3)增加預算確保美國在微電子產業之領先地位;(4)訂定國家微電子之研發計畫;(5)建置產業諮詢委員會;(6)訂定多邊出口控制計畫;(7)禁止資金與國外競爭者相關;(8)限制計畫、承包商、分包商,和預算來源為國防部者採購國內微電子設計與代工服務。 該法案授權國防部長及國家安全局長基於國家安全之需求,由國防部資助微電子產業的建構、研究與發展。資助、輔助微電子產業在製造、裝備、檢測、外觀與研發上的發展,以及在採購設備和智慧財產權上的現代化。此外,美、中的競爭亦延伸至國家關鍵科技保護的面向。該法案規定倘微電子公司在敏感技術的研發,技術的許可、轉讓或投資,係中國政府或其他國際競爭者所有、受其控制或影響,美國政府將收回對該公司之資助,並禁止其參與計畫。 在商業製造上,亦須降低風險,包含對微電子研發的分類和出口管制,確認管理流程,以及減輕供應鏈的安全風險;且須注意在國家安全方面的要求。並為確保美國在微電子產業上的領導地位,國家經費授權國防高階研究計畫機構(the Defense Advanced Research Projects Agency)拓展電子復興計畫(the Electronics Resurgence Initiative),發展具破壞性的微電子科技,包含發展足以支持國產微電子企業的研究量能;並由國家科學基金會(the National Science Foundation)、能源局(the Department of Energy)與國家標準技術研究所(National Institute of Standards and Technology),負責執行微電子的科學研究與開發。
紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。 於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。 如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。
歐盟發布第三版支付服務指令(PSD3)草案,強化消費者保護與改善產業環境歐盟執委會(European Commission)於2023年6月28日提出第三版支付服務指令(Third Payment Services Directive, PSD3)草案,目前預計於2024年底前通過最終版本,並於2026年施行。 相較第二版支付服務指令(PSD2),PSD3強化歐盟電子、數位支付和金融服務規範,補強安全性(Security)、透明度(Transparency)與促進創新(Innovation),建立更適合歐盟的支付架構。其旨在保護消費者權益和個人資訊,改善支付產業競爭環境,提高消費者對資料掌控度,促進創新金融產品服務發展。 PSD3修正重點歸納如下: 一、消費者保護:強化對未經授權交易之保護,完善支付詐欺或支付錯誤之賠償方案,減少消費者潛在損失。 二、開放銀行(Open Banking):持續推動開放銀行發展,透過加強規範第三方支付服務提供者(Third party payment provider, TPP)與提供更標準化與更安全的應用程式介面(Application Programming Interface, API),促進創新金融產業服務發展。 三、支付系統安全性:強化客戶身分認證(Strong Customer Authentication, SCA),促進支付過程的透明度與安全性。 四、因應新型詐欺:導入新規定與工具對抗日益增加的網路詐欺風險。 五、跨境支付:加強跨境支付措施與降低成本,推動歐盟市場一體化。 六、支付創新與多元化:導入區塊鏈或其他更先進的即時支付系統。 七、監管:制定更明確的法規,加強各方監管,確保市場公平與穩定。
韓國「電子文件認證管理系統」(Certified E-Document Authority System)法制化之簡介