美國資訊安全分析新挑戰:巨量資料(Big Data)之應用

  在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。

 

  資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。

 

  不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。

 

  由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。

 

  美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。

 

  「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。

 

  不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。

相關連結
※ 美國資訊安全分析新挑戰:巨量資料(Big Data)之應用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6036&no=55&tp=1 (最後瀏覽日:2025/11/20)
引註此篇文章
你可能還會想看
英國生物資訊身分證法將納入醫療及犯罪紀錄 引發侵犯個人隱私爭議

  英國為了 減少受到恐怖威脅和犯罪攻擊,於去年底在一讀通過 英國身分證法,預計2008年實施。該法案最具爭議之處是記載資料,包含一些生物辨識 (biometrics) 資料,如指紋、容貌辨識和虹膜掃描等,這些資料將會儲存在國家身分辨識註冊資料庫中。反對身分證法案者認為,儲存這些資料已侵犯個人隱私權。保守黨議員表示,除非內閣能「確實證明」有其必要性,否則將反對身分證法案到底。   現行持有英國護照並不需要更新,但在2008年後想要申請更新或換發護照時,就必須遵守新的規定,也引發另一爭議問題~費用過高。倫敦政經學院的報告認為,每個人的新版身分證所需的技術成本,實際需要約 300英鎊;而登錄生物辨識資訊所需要的掃描器,就需要花4000英鎊;另外,所登錄的資訊判讀性會隨著時間而降低,至少得每五年重新掃描換發。

法國科學家現正積極研究奈米碳管的毒性評估方式

  法國國家研究會議﹙French National Research Council﹙CNRS﹚﹚的科學家,過去三年持續投入奈米碳管的毒性研究,包括奈米管在環境中所引起的污染反應、其對人體的危害,以及如何以較清潔的方式從事奈米碳管的生產製造。這個研究計畫將側重於目前常為產業利用的各式奈米管。   目前,奈米碳管在全球的製造量高達每年數百噸之譜。優越的機械及電子性能,促使奈米碳管被大量運用在平面螢幕及汽車產業當中,甚至利用在運動產品之上。然而,除了擴增的應用領域之外,其對人體健康及環境的影響迄今尚未受到重視。使用奈米管的物質通常被當做一般廢棄物來處理,就其對於環境的影響,人們更是一無所知。   法國CNRS的科學家希望能夠釐清這樣的問題。目前,研究人員的觀察重點將在奈米碳管如何影響水生環境﹙aquatic environments﹚,以及兩棲生物在奈米管流佈的環境中如何生存及反應。此外,科學家們同時觀察奈米材料如何影響人體健康:他們正在觀察及研究巨嗜球﹙macrophage cells﹚如何與奈米碳管互動,以及在這種暴露環境下,實驗用鼠的肺部是否會產生發炎症狀。經由初步的實驗,科學家們發現人體會將奈米管視為異物,進而引發發炎反應。   接下來,CNRS會進一步研究如何以更清潔且對環境友善的方式來製造奈米管。

韓國政黨提出法案,建議修改「海關法」禁止營業秘密侵權商品之進出口

據韓國媒體於2024年2月13日報導指出,越來越多韓國企業面臨因為營業秘密的外洩而導致企業虧損的問題,鑒於目前的韓國海關扣留制度(Customs Retention System)僅適用於對外公開的智慧財產權(如商標與專利),多方呼籲應將侵害企業內部營業秘密之侵權商品納入海關法的管制中,甚至有政黨提出法案,建議擴大海關法的適用範圍,禁止侵害韓國企業營業秘密的商品進出口。 該篇報導藉一起正在調查中的營業秘密侵害案件為例,涉案之韓國槍械零件製造商,以「前員工在職時,透過個人電子郵件與客戶進行業務往來,取得企業營業秘密資訊(包括設計圖),並於離職後,創設一間A企業並涉嫌出口利用獲得之營業秘密生產的侵權商品」為由,於2023年向該名離職員工提起訴訟,該案後經政府機關調查,最終於2024年2月底進行首次聽證會。 針對上述案件,國防產業相關人士(Defense Industry Insiders)指出,因為韓國海關僅得依法禁止專利、商標之侵權商品進出口,營業秘密的侵權商品在爭議案件調查期間仍可持續進出口。對此,韓國政黨提出了一項法案(下稱系爭法案),旨在修改海關法,從而允許海關扣留「侵害營業秘密的商品」以及「侵害國家指定的先進工業和國防技術的商品」。 該篇報導也指出,雖韓國海關局對於修法基本上持贊成態度,但也有相關疑慮,如:可能會因為海關扣留範圍的擴大被濫用於壓制競爭行為;相較於容易識別的商標侵權案,營業秘密的範圍很廣,界線模糊,可能造成海關難以立即識別侵權。 綜上,即使系爭法案有利於營業秘密侵權救濟,但仍有上述疑慮有待解決,故本議題仍值得持續關注。而本文仍建議相較於事後救濟,企業可參考資策會科法所發布之「營業秘密保護管理規範」,透過PDCA循環建置系統性營業秘密規範,協助企業從事前防範營業秘密侵權風險,始為企業長久經營之計。 本文同步刊登於TIPS網(https://www.tips.org.tw)

歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

TOP