為杜絕網路盜版行為,美國AT&T、Verizon、Cablevision、Time Warner Cable及Comcast等主要網路服務提供者共同推動著作權警告系統(Copyright Alert System, CAS),亦稱為Six Strikes系統。該系統可用在舉發透過P2P違法下載音樂、電影、電視節目盜版的網路使用者,而舉發盜版者之業務係委由MarkMonitor公司執行。
但最近MarkMonitor公司在執行舉發著作權侵權嫌疑者的業務過程中,卻發生誤認某一著作權人的合法網站為侵權網站,並通報Google要求刪除的烏龍事件。2013年2月3日MarkMonitor公司代替HBO公司在Google上檢索確認有侵害「Eastbound and Down」節目著作權的可疑網站,並且要求Google根據DMCA規定發出刪除通知。但是,MarkMonitor公司在舉發侵權過程中,除搜尋到著作權侵權網站的URL網址,甚至連HBO營運的8個官方網站和其它針對「Eastbound and Down」節目內容討論的網站如Perez Hilton、Hitfix,以及單純刊登新聞社論的網站等合法網站,均接受到DMCA的刪除通知。此一事件發生後,不僅讓被誤認的合法網站和HBO所屬網站的合法著作流通遭受損害,同時也讓各界質疑MarkMonitor公司的DtecNet軟體自動舉發盜版的成效,亦質疑在沒有其它監督機構的情況下,MarkMonitor公司的系統仍有可能發生誤判的情形。
雖著作權資訊中心(Center for Copyright Information, CCI)獨立顧問Stroz Friedberg表示DtecNet軟體準確性及穩定性應無問題,但是外界認為Stroz曾是美國唱片協會(RIAA)的國會遊說者(lobbyist),亦是著作權警告系統的創立成員之一,其說法公正性令人存疑。再者,若無第2個獨立機構監督MarkMonitor的系統運作,將來正式利用此一軟體舉發Bittorrent使用者時,合法網路使用者難以避免地有被誤認為侵權者之虞。因此,未來該系統運作成效及發展情況仍有待繼續關注。
德國今年1月底通過新修法,使國際知名生技公司孟山都主要用做於飼料的基改抗蟲玉米MON810得以在德國更加順利種植。 原來德國法律規定基改作物與其相同種類傳統非基改作物間的種植距離為150公尺,與有機作物間的距離則為300公尺;但這項距離的規定對於農田面積多數不大的德國西部來說始終是一個問題,新法為此提供了一項新的出路,亦即基改作物種植者可與其相鄰傳統作物種植者簽訂契約來排除前述種植距離的限制,此項契約雖可能使傳統作物必須標示成為基改作物,但預估仍不會減低傳統作物種植者簽訂契約的意願。 專家評論德國這項新的立法仍然為德不卒,由於新立法並未將德國公開註冊制度中基改作物需揭露詳細的種植地點改為只需揭露種植地區,使得反基改分子仍將得以順利找到基改作物並加以破壞。另外,此次亦未修正的鄰田污染賠償責任使專家擔憂基改研究仍將限於校園內。 MON810在另一端的法國則顯得命運多舛,自去年秋天起,法國引用歐盟法的防衛條款(Articles 23 of the EU Deliberate Release Directive)來暫時禁種此一抗蟲玉米,於今年1月初,法國政府為此項問題所組成的委員會向環境部長提交調查結果,委員會主席並對外表示嚴重質疑MON810的安全性,並已取得大量MON810對動、植物負面影響的科學證據,使法國政府於1月中宣佈延續去年的禁種令。但專家質疑委員會主席對於調查報告之陳述失之客觀,由於調查報告中關於MON810商業種植對於環境影響的問題仍懸而未定,事實上並未存有委員會主席所謂的「嚴重質疑」。
美國加州日前開始審查輕量自動駕駛運輸載具應用之測試申請美國加州行政法辦公室(the Office of Administrative Law)於2019年12月17日宣布,根據日前通過之修訂規範,該州車輛管理局(the Department of Motor Vehicles)將審查州內公共道路上進行輕型自動駕駛(下稱自駕)運輸服務商業化應用測試之申請,換言之,業者如取得車輛管理局之核准,可以測試重量未達10,001磅之自駕運輸車輛(如一般客車、中型貨車、可載運雜貨類商品的客貨兩用車等)服務。另外,業者如欲就該自駕運輸服務收取運輸費用,則必須另向車輛管理局申請佈署(deployment)許可,即商業化或供公眾使用之許可。 不論何種自駕運輸車輛服務之測試,均須遵循現行測試、佈署之申請程序要求,並根據車輛管理局的核准內容進行有或無安全性駕駛人(safety driver)的自駕運輸服務測試,簡要整理不同規範要求如下: 如為有安全性駕駛人之測試與應用,有以下要求: 證明車輛已經曾在符合應用目的之情境(如駕駛環境)下進行測試。 維持測試駕駛人(test driver)的培訓規劃,並且證明每位測試駕駛人均完成培訓。 確保測試駕駛人維持潔淨(clean)的駕駛記錄。 確保測試駕駛人在測試期間乘坐在駕駛座上監控車輛的運行狀況,並在有需要的時候可以即時接管車輛。 須提交年度脫離(或譯為解除自駕)報告(disengagement report),且如有發生碰撞,須於10日內提交碰撞報告予車輛管理局。 如為無安全性駕駛人之測試與應用,有以下要求: 提供測試自駕運輸服務所在地方當局之書面通知以茲證明。 證明自駕測試車輛符合以下要求: (1)車輛與遠端遙控操作者間具有通訊連結。 (2)車輛與執法部門間的通訊方式。 (3)製造商將如何監控測試車輛之說明 提交一份與執法部門如何互動交流的計畫。 證明自駕測試車輛符合聯邦機動車輛安全標準(FMVSS),或提供國家公路交通安全管理局(NHTSA)之豁免監管證明。 證明自駕測試車輛可以在沒有駕駛人存在的情況下可以自主運行,並屬於美國汽車工程師協會(SAE)標準等級4、等級5之車輛。 證明測試車輛已經曾在符合應用目的之情境(如駕駛環境)下進行測試。 通知車輛管理局將要測試營運的區域範圍。 維持遠端遙控操作相關培訓規劃,並證明每位遠端遙控操作者均完成培訓。 須提交年度脫離報告,且如有發生碰撞,須於10日內提交碰撞報告予車輛管理局。 如自駕運輸服務擬商業化或供公眾使用,申請佈署之相關要求如下: 證明車輛: (1)配備自駕車輛資料紀錄器,此技術是根據加州車輛法規(California Vehicle Code)設計來偵測並反應道路實際狀況 (2)符合聯邦機動車輛安全標準或提供國家公路交通安全管理局之豁免監管證明。 (3)符合現行關於網路攻擊、非經授權侵入或錯誤車輛控制指令之防護、偵測與回應等產業標準。 (4)製造商曾進行測試與驗證,並有足夠信心將車輛佈署於公用道路上。 提交一份與執法部門如何互動交流的計畫複本。 如果車輛不需要駕駛員,製造商必須證明其他事項: (1) 車輛與遠端遙控操作者間具有通訊連結。 (2) 當碰撞事故發生時,車輛可以顯示或傳輸相關資訊予車輛所有人或操作員。 綜上所述,若要在加州進行自駕運輸車輛服務測試,須視其服務型態及是否涉及佈署,以遵循不同規範要求,申言之,服務採行有無安全性駕駛人與是否商業化或供公眾使用,二者為併行關係,舉例來說,如業者擬佈署有安全性駕駛人之商業運輸服務,則須同時符合有安全性駕駛人之測試與應用以及佈署等要求。加州對於自駕車輛運輸服務商業化之措舉,值得我國借鏡以完善自駕車輛運輸應用之推動。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
歐盟公布行動健康(mHealth)公共諮詢報告歐盟在2014針對行動健康(mHealth)綠皮書進行公共諮詢,要求相關之人針對mHealth發展的十一個議題提出意見。進行的時間從2014年4月10日至7月10日,歐盟在2015年1月12日公布諮詢結果,總計有211位參與者回覆,其中71%由組織機構回覆,29%則為個人意見回覆。 在諮詢報告中所提列之十一項議題包含:1. 健康資料的安全性、2. 巨量資料、3. 於目前歐盟法規下的適用情況、4. 病人安全性與資訊透明化、5. mHealth在醫療照護系統的定位以及平等使用、6. 互通性、7. 補助機制、8. 責任歸屬、9. 研究與發展、10.國際合作、11. mHealth市場發展性等。 針對上述議題,諮詢報告提出幾項認為未來發展mHealth時面臨之問題以及應該如何因應。包含: 1. 多數認為應建立隱私安全保護工具,包括資料加密以及驗證機制。逾半數的人認為應該執行資料保護,將法規適用於mHealth相關器材。2. 近半數的人要求病人安全以及資料的透明性,因此,應可建立制度使這些mHealth APP經品質認證通過後上市。3. 對於mHealth的業者而言,認為需要有清楚的法規架構、互通性以及共通的品質標準建立,才能有助於產業的發展。4.透過立法、自律機制以及指導原則的建立,使mHealth APP所衍生之問題能有規範可供解決。5. 部分認為mHealth的成本效益需要有更多的數據證據分析來評估。例如,在美歐國家曾進行一項測試,mHealth可以減少50-60%肺部慢性疾病病人住院以及再次入院的比例。此外,mHealth亦可減少25%老人照護的成本支出。6. 歐盟以及各個國家應該確認mHealth的互通性,基於持續性的照護以及研究目的,能有共通可相互使用的電子醫療紀錄。7. 其次則是應該促使開放標準,並有醫療專家以及使用者積極參與使mHealth能完備進行。 在歐盟此的mHealth公共諮詢報告中,已提出未來可能面臨的問題,歐盟嘗試以既有之指令規範檢視mHealth衍生之問題是否能夠加以因應解決,其主要目的仍在於讓消費者能安全使用,同時亦希望能促進產業開發與進步,其後續發展值得觀察,同時亦可提供相關業者開發時之參考。