為杜絕網路盜版行為,美國AT&T、Verizon、Cablevision、Time Warner Cable及Comcast等主要網路服務提供者共同推動著作權警告系統(Copyright Alert System, CAS),亦稱為Six Strikes系統。該系統可用在舉發透過P2P違法下載音樂、電影、電視節目盜版的網路使用者,而舉發盜版者之業務係委由MarkMonitor公司執行。
但最近MarkMonitor公司在執行舉發著作權侵權嫌疑者的業務過程中,卻發生誤認某一著作權人的合法網站為侵權網站,並通報Google要求刪除的烏龍事件。2013年2月3日MarkMonitor公司代替HBO公司在Google上檢索確認有侵害「Eastbound and Down」節目著作權的可疑網站,並且要求Google根據DMCA規定發出刪除通知。但是,MarkMonitor公司在舉發侵權過程中,除搜尋到著作權侵權網站的URL網址,甚至連HBO營運的8個官方網站和其它針對「Eastbound and Down」節目內容討論的網站如Perez Hilton、Hitfix,以及單純刊登新聞社論的網站等合法網站,均接受到DMCA的刪除通知。此一事件發生後,不僅讓被誤認的合法網站和HBO所屬網站的合法著作流通遭受損害,同時也讓各界質疑MarkMonitor公司的DtecNet軟體自動舉發盜版的成效,亦質疑在沒有其它監督機構的情況下,MarkMonitor公司的系統仍有可能發生誤判的情形。
雖著作權資訊中心(Center for Copyright Information, CCI)獨立顧問Stroz Friedberg表示DtecNet軟體準確性及穩定性應無問題,但是外界認為Stroz曾是美國唱片協會(RIAA)的國會遊說者(lobbyist),亦是著作權警告系統的創立成員之一,其說法公正性令人存疑。再者,若無第2個獨立機構監督MarkMonitor的系統運作,將來正式利用此一軟體舉發Bittorrent使用者時,合法網路使用者難以避免地有被誤認為侵權者之虞。因此,未來該系統運作成效及發展情況仍有待繼續關注。
依據本(2013)年9月26日中國大陸國家統計局、科學技術部、財政部聯合發布之統計公報顯示,去(2012)年全中國投入在研究與試驗發展(R&D)之經費支出達人民幣(以下同)10,298.4億元,較前(2011)年增加1,611.4億元,成長約18.5%。而大陸地區之研究與試驗發展經費約佔其國內生產總值(GDP)之1.98%,較2011年的1.84%提高0.14個百分點。惟同期(2012年,即民國101年)我國研發經費總計為新台幣4,312.96億元,佔臺灣地區GDP比率為3.07%,較中國大陸1.98%之比率略高。 另據大陸統計公報顯示,在中國大陸10,298.4億元之研發經費內,用於「基礎研究」之支出為498.8億元,比2011年增長21.1%;在「應用研究」之經費則為1,162億元,增長13%;至於「試驗發展」經費支出則為最大宗,達8,637.6億元,增長19.2%。總體來說,大陸地區之基礎研究、應用研究和試驗發展3項,佔其研發經費總支出之比率分別為4.8%、11.3%和83.9%;而臺灣地區則是以基礎研究、應用研究及技術發展等3類為區分,在2011年時分別為9.7%、23.7%及66.6%,說明臺灣地區在基礎與應用研究2部份佔研發經費總支出之比率較中國大陸為高。 然而相關研發經費投入至後續產出專利、運用,能否有效結合,或因而強化國家競爭力、減少需用單位間之落差,已是兩岸或其他國家所關切的焦點。因此,為利知己知彼,除了瞭解競爭國家之資源投入情形外,其研發成果相關運用情形等,亦實值得我們後續觀察、研究。
LPL與華映在美侵權訴訟–加州法院駁回部份主張韓國樂金飛利浦(LPL)在美國加州控告華映(CPT)專利侵害案,自2002年8月起,至今已纏訟五年之久。 LPL控告CPT侵害其4件Side-mount專利(US6,002,457、US5,926,237、US6,373,537、US6,020,942),與2件Process專利(US4,624,737、US5, 825,449)。華映表示,前4件被加州法院以欠缺依據駁回。對此判決,華映表示欣慰。 LPL與華映之間的專利侵權訴訟爭議不休。華映強調,其在尊重智慧財產權的理念下蒐集證據進行因應,加州法院雖以LPL所提Side Mount訴訟欠缺依據(Lack of Standing)下令駁回LPL訴訟,但就另二件Process專利部份,目前法院對於雙方所提交之post trial motion作出部份同意及部份駁回的決定(Order),但法院尚未做出正式判決。 彭博社報導已傳出,美國洛杉磯聯邦法院網站已公佈裁決文,並同意LPL對華映加重侵權賠償的請求,以及持續侵權與判決前和判決後之利益與法律費用賠償。但並未透露加重賠償之確切金額。就此,華映發表聲明指出,對法官准許LPL部分訴求的初步決定,感到遺憾。華映表示其已掌握證據,待收到法院正式判決後將積極因應,且不排除上訴。
聯合國討論網路身份管理計畫聯合國國家安全組織(U.N. National Security Agency)計畫於一項名為Q6/17之「網路使用者身份管理計畫」提案中,討論如何以修改網路架構之方式,確保網路通訊來源之真實性與可追溯性。此項計畫被認為可能對網路匿名性產生極大衝擊。 目前網路所賴以溝通訊息之TCP/IP通訊架構,仍允許使用者於一定範圍內保有於網路上匿名發言或活動之可能,例如Tor線上匿名軟體(Tor: anonymity online)之運作即是。然而,此種匿名式的運作架構,被抨擊可能威脅網路安全,例如駭客可利用大量偽造來源地址(spoofed source IP addresses),發動分散式阻斷服務(DDoS)攻擊。 有鑑於此,Q6/17提案乃嘗試藉由網路連線技術架構的調整,確保未來任何網路上之活動皆可追蹤出原始網路通訊來源(“IP Trackback”)。然而,此種作法被批評為將摧毀網路匿名特性,並對個人隱私造成侵害,或成為各國政府打擊政治異議人士的工具。發表匿名言論權利曾受許多國家憲法或國際條約的肯認,例如1995年美國最高法院於McIntyre v. Ohio Elections Commission一案,做出「匿名發表權乃受憲法保護之人民基本權」見解,歐盟亦有「網路通訊自由宣言(Declaration on Freedom of Communication on the Internet)」。故Q6/17嘗試消弭發表網路匿名言論之技術突破,是否能通過世界各國憲法之嚴格檢驗,仍值得後續關注研究。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。